如图, ,点 为射线 上的一动点.过点 作 于点 .点 在 内,且满足 , .
(1)当 时,求点 到 的距离;
(2)在射线 上是否存在一定点 ,使得 ?若存在,请用直尺(不带刻度)和圆规作出点 (不必写作法,但要保留作图痕迹),并求 的长;若不存在,说明理由.
在图1,2,3中,已知,,点为线段上的动点,连接,以为边向上作菱形,且.
(1)如图1,当点与点重合时, ;
(2)如图2,连接.
①填空: (填“”,“ “,“” ;
②求证:点在的平分线上;
(3)如图3,连接,,并延长交的延长线于点,当四边形是平行四边形时,求的值.
如图,在 中, ,点 、 分别是 、 的中点.
(1)求证: ;
(2)当四边形 为菱形时,求出该菱形的面积.
在中,,点在以为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).
(1)在图1中作弦,使;
(2)在图2中以为边作一个的圆周角.
如图,线段 ,射线 , 为射线 上一点,以 为边作正方形 ,且点 、 与点 在 两侧,在线段 上取一点 ,使 ,直线 与线段 相交于点 (点 与点 、 不重合).
(1)求证: ;
(2)判断 与 的位置关系,并说明理由;
(3)求 的周长.
如图,四边形 为平行四边形,连接 ,且 .请用尺规完成基本作图:作出 的角平分线与 交于点 .连接 交 于点 ,交 于点 ,猜想线段 和线段 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)
如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图, 为等腰直角三角形,延长 至点 使 , 是矩形,其对角线 , 交于点 ,连接 交 于点 .
(1)求证: ;
(2)求 的值.
如图,以等边三角形 的 边为直径画圆,交 于点 , 于点 ,连接 ,且 .
(1)求证: 是 的切线;
(2)求线段 的长度.
如图,在 中, , , , ,点 是边 上一点,连接 ,将 沿 翻折得到 .
(1)若 , ,且 ,求 的长;
(2)连接 ,若四边形 是平行四边形,求 与 之间的关系式.
如图,在 中, ,点 、 分别在 、 上, , 、 相交于点 .
(1)求证: ;
(2)求证: .
在 中, , , ,若 ,如图1,则有 ;若 为锐角三角形时,小明猜想: ,理由如下:如图2,过点 作 于点 ,设 .在 中, ,在 中,
,
当 为锐角三角形时,
所以小明的猜想是正确的.
(1)请你猜想,当 为钝角三角形时, 与 的大小关系.
(2)温馨提示:在图3中,作 边上的高.
(3)证明你猜想的结论是否正确.