(1)如图1,菱形的顶点、在菱形的边上,且,请直接写出的结果(不必写计算过程)
(2)将图1中的菱形绕点旋转一定角度,如图2,求;
(3)把图2中的菱形都换成矩形,如图3,且,此时的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.
如图,,点、分别在射线、上,,.
(1)用尺规在图中作一段劣弧,使得它在、两点分别与射线和相切.要求:写出作法,并保留作图痕迹;
(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;
(3)求所得的劣弧与线段、围成的封闭图形的面积.
如图,正方形 ,点 在边 上,且 , ,垂足为 ,且交 于点 , 与 交于点 ,延长 至 ,使 ,连接 .有如下结论:① ;② ;③ ;④ .上述结论中,所有正确结论的序号是
A. |
①② |
B. |
①③ |
C. |
①②③ |
D. |
②③④ |
如图,在中,,以为直径的分别与,交于点,,过点作,垂足为点.
(1)求证:直线是的切线;
(2)求证:;
(3)若的半径为4,,求阴影部分的面积.
如图,矩形中,点在边上,将沿折叠,点落在边上的点处,过点作交于点,连接.
(1)求证:四边形是菱形;
(2)若,,求四边形的面积.
如图,在 和 中, , , , ,连接 , 交于点 ,连接 .下列结论:① ;② ;③ 平分 ;④ 平分 .其中正确的个数为
A. |
4 |
B. |
3 |
C. |
2 |
D. |
1 |
(1)如图1,是正方形边上的一点,连接、,将绕点逆时针旋转,旋转后角的两边分别与射线交于点和点.
①线段和的数量关系是 ;
②写出线段,和之间的数量关系.
(2)当四边形为菱形,,点是菱形边所在直线上的一点,连接、,将绕点逆时针旋转,旋转后角的两边分别与射线交于点和点.
①如图2,点在线段上时,请探究线段、和之间的数量关系,写出结论并给出证明;
②如图3,点在线段的延长线上时,交射线于点,若,,直接写出线段的长度.
已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为
A. |
7 |
B. |
8 |
C. |
9 |
D. |
10 |