如图,二次函数 的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数 的图象经过该二次函数图象上的点A(﹣1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足 的x的取值范围.
如图,对称轴为直线 x=2的抛物线 y= x 2+ bx+ c与 x轴交于点 A和点 B,与 y轴交于点 C,且点 A的坐标为(﹣1,0)
(1)求抛物线的解析式;
(2)直接写出 B、 C两点的坐标;
(3)求过 O, B, C三点的圆的面积.(结果用含π的代数式表示)
注:二次函数 y= ax 2+ bx+ c( a≠0)的顶点坐标为( )
已知,点 为二次函数 图象的顶点,直线 分别交 轴正半轴, 轴于点 , .
(1)判断顶点 是否在直线 上,并说明理由.
(2)如图1,若二次函数图象也经过点 , ,且 ,根据图象,写出 的取值范围.
(3)如图2,点 坐标为 ,点 在 内,若点 , , , 都在二次函数图象上,试比较 与 的大小.
直线 y= kx+ b与抛物线 交于 A( x 1, y 1)、 B( x 2, y 2)两点,当 OA⊥ OB时,直线 AB恒过一个定点,该定点坐标为 .
如图,过抛物线 上一点 作 轴的平行线,交抛物线于另一点 ,交 轴于点 ,已知点 的横坐标为 .
(1)求抛物线的对称轴和点 的坐标;
(2)在 上任取一点 ,连接 ,作点 关于直线 的对称点 ;
①连接 ,求 的最小值;
②当点 落在抛物线的对称轴上,且在 轴上方时,求直线 的函数表达式.
如图,已知二次函数 的图象与 轴相交于 , 两点,与 轴相交于点 .
(1)求这个二次函数的表达式;
(2)若 是第四象限内这个二次函数的图象上任意一点, 轴于点 ,与线段 交于点 ,连接 .
①求线段 的最大值;
②当 是以 为一腰的等腰三角形时,求点 的坐标.
定义:如图1,抛物线 与 轴交于 , 两点,点 在该抛物线上 点与 、 两点不重合),如果 的三边满足 ,则称点 为抛物线 的勾股点.
(1)直接写出抛物线 的勾股点的坐标.
(2)如图2,已知抛物线 与 轴交于 , 两点,点 是抛物线 的勾股点,求抛物线 的函数表达式.
(3)在(2)的条件下,点 在抛物线 上,求满足条件 的 点(异于点 的坐标.
如图抛物线 y= ax 2+ bx+ c经过点 A(﹣1,0),点 C(0,3),且 OB= OC.
(1)求抛物线的解析式及其对称轴;
(2)点 D、 E在直线 x=1上的两个动点,且 DE=1,点 D在点 E的上方,求四边形 ACDE的周长的最小值.
(3)点 P为抛物线上一点,连接 CP,直线 CP把四边形 CBPA的面积分为3:5两部分,求点 P的坐标.
如图,已知顶点为 C(0,﹣3)的抛物线 y= ax 2+ b( a≠0)与 x轴交于 A, B两点,直线 y= x+ m过顶点 C和点 B.
(1)求 m的值;
(2)求函数 y= ax 2+ b( a≠0)的解析式;
(3)抛物线上是否存在点 M,使得∠ MCB=15°?若存在,求出点 M的坐标;若不存在,请说明理由.
如图,抛物线 与 轴的负半轴交于点 ,与 轴交于点 ,连接 ,点 在抛物线上,直线 与 轴交于点 .
(1)求 的值及直线 的函数表达式;
(2)点 在 轴正半轴上,点 在 轴正半轴上,连接 与直线 交于点 ,连接 并延长交 于点 ,若 为 的中点.
①求证: ;
②设点 的横坐标为 ,求 的长(用含 的代数式表示).
已知抛物线 y= x 2+ mx﹣2 m﹣4( m>0).
(1)证明:该抛物线与 x轴总有两个不同的交点;
(2)设该抛物线与 x轴的两个交点分别为 A, B(点 A在点 B的右侧),与 y轴交于点 C, A, B, C三点都在⊙ P上.
①试判断:不论 m取任何正数,⊙ P是否经过 y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;
②若点 C关于直线 x=﹣ 的对称点为点 E,点 D(0,1),连接 BE, BD, DE,△ BDE的周长记为 l,⊙ P的半径记为 r,求 的值.
已知二次函数 y= ax 2﹣ bx+ c且 a= b,若一次函数 y= kx+4与二次函数的图象交于点 A(2,0).
(1)写出一次函数的解析式,并求出二次函数与 x轴交点坐标;
(2)当 a> c时,求证:直线 y= kx+4与抛物线 y= ax 2﹣ bx+ c一定还有另一个异于点 A的交点;
(3)当 c< a≤ c+3时,求出直线 y= kx+4与抛物线 y= ax 2﹣ bx+ c的另一个交点 B的坐标;记抛物线顶点为 M,抛物线对称轴与直线 y= kx+4的交点为 N,设 S= S △ AMN﹣ S △ BMN,写出 S关于 a的函数,并判断 S是否有最大值?如果有,求出最大值;如果没有,请说明理由.
如图,直线 y=﹣ x+3与 x轴、 y轴分别交于 B、 C两点,抛物线 y=﹣ x 2+ bx+ c经过点 B、 C,与 x轴另一交点为 A,顶点为 D.
(1)求抛物线的解析式;
(2)在 x轴上找一点 E,使 EC+ ED的值最小,求 EC+ ED的最小值;
(3)在抛物线的对称轴上是否存在一点 P,使得∠ APB=∠ OCB?若存在,求出 P点坐标;若不存在,请说明理由.
在平面直角坐标系中,设二次函数 ,其中 .
(1)若函数 的图象经过点 ,求函数 的表达式;
(2)若一次函数 的图象与 的图象经过 轴上同一点,探究实数 , 满足的关系式;
(3)已知点 , 和 在函数 的图象上,若 ,求 的取值范围.
如图①,直线 y= x﹣3与 x轴、 y轴分别交于点 B, C,抛物线 y= + bx+ c过 B, C两点,且与 x轴的另一个交点为点 A,连接 AC.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点 D(与点 A不重合),使得 S △ DBC= S △ ABC,若存在,求出点 D的坐标;若不存在,请说明理由;
(3)有宽度为2,长度足够长的矩形(阴影部分)沿 x轴方向平移,与 y轴平行的一组对边交抛物线于点 P和点 Q,交直线 CB于点 M和点 N,在矩形平移过程中,当以点 P, Q, M, N为顶点的四边形是平行四边形时,求点 M的坐标.