已知:如图,抛物线与坐标轴分别交于点,,,点是线段上方抛物线上的一个动点.
(1)求抛物线解析式;
(2)当点运动到什么位置时,的面积最大?
(3)过点作轴的垂线,交线段于点,再过点作轴交抛物线于点,连接,请问是否存在点使为等腰直角三角形?若存在,求点的坐标;若不存在,说明理由.
抛物线与轴交于,两点,与轴交于点,已知点的坐标为,为抛物线第一象限上一点.
(1)求抛物线的解析式;
(2)如图1,连接,,若,求的面积;
(3)如图2,连接,,若,求点的坐标.
如图,抛物线与轴交于,两点,与轴交于点,点的坐标为.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上找一点,使的值最小.并求出点坐标;
(3)在第二象限内的抛物线上,是否存在点,使得的面积是面积的一半?若存在,求出点的坐标,若不存在,请说明理由.
已知:如图,抛物线 经过原点 和点 , 为抛物线上的一个动点,过点 作 轴的垂线,垂足为 ,并与直线 交于点 .
(1)求抛物线的解析式;
(2)当点 在直线 上方时,求线段 的最大值;
(3)过点 作 轴于点 ,在抛物线上是否存在点 ,使得以 、 、 、 四点为顶点的四边形是平行四边形?若存在,求 的值;若不存在,请说明理由.
在平面直角坐标系中,点,点.已知抛物线是常数),顶点为.
(Ⅰ)当抛物线经过点时,求顶点的坐标;
(Ⅱ)若点在轴下方,当时,求抛物线的解析式;
(Ⅲ)无论取何值,该抛物线都经过定点.当时,求抛物线的解析式.
已知抛物线是常数)经过点.
(1)求该抛物线的解析式和顶点坐标;
(2)为抛物线上的一个动点,关于原点的对称点为.
①当点落在该抛物线上时,求的值;
②当点落在第二象限内,取得最小值时,求的值.
已知抛物线 的顶点为 ,与 轴的交点为 ,点 .
(Ⅰ) 求点 , 的坐标;
(Ⅱ) 将抛物线 向上平移得到抛物线 ,点 平移后的对应点为 ,且 .
①求抛物线 的解析式;
②若点 关于直线 的对称点为 ,射线 与抛物线 相交于点 ,求点 的坐标 .
综合与探究
如图,抛物线经过点,两点,与轴交于点,点是抛物线上一个动点,设点的横坐标为.连接,,,.
(1)求抛物线的函数表达式;
(2)的面积等于的面积的时,求的值;
(3)在(2)的条件下,若点是轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
综合与探究
如图,在平面直角坐标系中,已知抛物线 与 轴交于 , 两点,与 轴交于点 ,直线 经过坐标原点 ,与抛物线的一个交点为 ,与抛物线的对称轴交于点 ,连接 ,已知点 , 的坐标分别为 , .
(1)求抛物线的函数表达式,并分别求出点 和点 的坐标;
(2)试探究抛物线上是否存在点 ,使 ?若存在,请直接写出点 的坐标;若不存在,请说明理由;
(3)若点 是 轴负半轴上的一个动点,设其坐标为 ,直线 与直线 交于点 ,试探究:当 为何值时, 是等腰三角形.
在平面直角坐标系中(如图),已知抛物线,其顶点为.
(1)写出这条抛物线的开口方向、顶点的坐标,并说明它的变化情况;
(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.
①试求抛物线的“不动点”的坐标;
②平移抛物线,使所得新抛物线的顶点是该抛物线的“不动点”,其对称轴与轴交于点,且四边形是梯形,求新抛物线的表达式.
在平面直角坐标系中(如图).已知抛物线经过点和点,顶点为,点在其对称轴上且位于点下方,将线段绕点按顺时针方向旋转,点落在抛物线上的点处.
(1)求这条抛物线的表达式;
(2)求线段的长;
(3)将抛物线平移,使其顶点移到原点的位置,这时点落在点的位置,如果点在轴上,且以、、、为顶点的四边形面积为8,求点的坐标.
已知在平面直角坐标系中(如图),已知抛物线经过点,对称轴是直线,顶点为.
(1)求这条抛物线的表达式和点的坐标;
(2)点在对称轴上,且位于顶点上方,设它的纵坐标为,联结,用含的代数式表示的余切值;
(3)将该抛物线向上或向下平移,使得新抛物线的顶点在轴上.原抛物线上一点平移后的对应点为点,如果,求点的坐标.
如图,抛物线 经过点 ,与 轴的负半轴交于点 ,与 轴交于点 ,且 ,抛物线的顶点为点 .
(1)求这条抛物线的表达式;
(2)联结 、 、 、 ,求四边形 的面积;
(3)如果点 在 轴的正半轴上,且 ,求点 的坐标.
在平面直角坐标系中,已知抛物线经过点和点,关于原点对称的抛物线为.
(1)求抛物线的表达式;
(2)点在抛物线上,且位于第一象限,过点作轴,垂足为.若与相似,求符合条件的点的坐标.