在平面直角坐标系中,已知抛物线L:y=ax2+(c-a)x+c经过点A(-3,0)和点B(0,-6),L关于原点O对称的抛物线为L'.
(1)求抛物线L的表达式;
(2)点P在抛物线L'上,且位于第一象限,过点P作PD⊥y轴,垂足为D.若ΔPOD与ΔAOB相似,求符合条件的点P的坐标.
如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均与小正方形的顶点重合. (1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且位似比为1∶2; (2)连接(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).
已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2),(正方形网格中,每个小正方形的边长是1个单位长度) (1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标; (2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2∶1,并直接写出C2点的坐标及△A2BC2的面积.
如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F. (1)求证:梯形ABCD是等腰梯形; (2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.
如图,在梯形ABCD中,AB∥CD,AD=BC,将△ACD沿对角线翻折后,点D恰好与边AB的中点M重合. (1)点C是否在以AB为直径的圆上?请说明理由. (2)当AB=4时,求此梯形的面积.
如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的圆交x轴于D、E两点(点D在点E的右方)求点E、D的坐标.