初中数学

如图,已知抛物线 y = a x 2 + 3 2 x + 4 的对称轴是直线 x = 3 ,且与 x 轴相交于 A B 两点 ( B 点在 A 点右侧)与 y 轴交于 C 点.

(1)求抛物线的解析式和 A B 两点的坐标;

(2)若点 P 是抛物线上 B C 两点之间的一个动点(不与 B C 重合),则是否存在一点 P ,使 ΔPBC 的面积最大.若存在,请求出 ΔPBC 的最大面积;若不存在,试说明理由;

(3)若 M 是抛物线上任意一点,过点 M y 轴的平行线,交直线 BC 于点 N ,当 MN = 3 时,求 M 点的坐标.

来源:2018年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,对称轴为直线 x = 1 的抛物线 y = x 2 bx + c x 轴交于 A ( x 1 0 ) B ( x 2 0 ) ( x 1 < x 2 ) 两点,与 y 轴交于 C 点,且 1 x 1 + 1 x 2 = 2 3

(1)求抛物线的解析式;

(2)抛物线顶点为 D ,直线 BD y 轴于 E 点;

①设点 P 为线段 BD 上一点(点 P 不与 B D 两点重合),过点 P x 轴的垂线与抛物线交于点 F ,求 ΔBDF 面积的最大值;

②在线段 BD 上是否存在点 Q ,使得 BDC = QCE ?若存在,求出点 Q 的坐标;若不存在,请说明理由.

来源:2018年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx 3 x 轴交于点 A ( 3 , 0 ) 和点 B ( 1 , 0 ) ,交 y 轴于点 C ,过点 C CD / / x 轴,交抛物线于点 D

(1)求抛物线的解析式;

(2)若直线 y = m ( 3 < m < 0 ) 与线段 AD BD 分别交于 G H 两点,过 G 点作 EG x 轴于点 E ,过点 H HF x 轴于点 F ,求矩形 GEFH 的最大面积;

(3)若直线 y = kx + 1 将四边形 ABCD 分成左、右两个部分,面积分别为 S 1 S 2 ,且 S 1 : S 2 = 4 : 5 ,求 k 的值.

来源:2018年四川省内江市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,抛物线顶点 P ( 1 , 4 ) ,与 y 轴交于点 C ( 0 , 3 ) ,与 x 轴交于点 A B

(1)求抛物线的解析式.

(2) Q 是抛物线上除点 P 外一点, ΔBCQ ΔBCP 的面积相等,求点 Q 的坐标.

(3)若 M N 为抛物线上两个动点,分别过点 M N 作直线 BC 的垂线段,垂足分别为 D E .是否存在点 M N 使四边形 MNED 为正方形?如果存在,求正方形 MNED 的边长;如果不存在,请说明理由.

来源:2018年四川省南充市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx ( a 0 ) 过点 A ( 3 3 ) 和点 B ( 3 3 0 ) .过点 A 作直线 AC / / x 轴,交 y 轴于点 C

(1)求抛物线的解析式;

(2)在抛物线上取一点 P ,过点 P 作直线 AC 的垂线,垂足为 D .连接 OA ,使得以 A D P 为顶点的三角形与 ΔAOC 相似,求出对应点 P 的坐标;

(3)抛物线上是否存在点 Q ,使得 S ΔAOC = 1 3 S ΔAOQ ?若存在,求出点 Q 的坐标;若不存在,请说明理由.

来源:2018年四川省绵阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图①,已知抛物线 y = a x 2 + bx + c 的图象经过点 A ( 0 , 3 ) B ( 1 , 0 ) ,其对称轴为直线 l : x = 2 ,过点 A AC / / x 轴交抛物线于点 C AOB 的平分线交线段 AC 于点 E ,点 P 是抛物线上的一个动点,设其横坐标为 m

(1)求抛物线的解析式;

(2)若动点 P 在直线 OE 下方的抛物线上,连接 PE PO ,当 m 为何值时,四边形 AOPE 面积最大,并求出其最大值;

(3)如图②, F 是抛物线的对称轴 l 上的一点,在抛物线上是否存在点 P 使 ΔPOF 成为以点 P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点 P 的坐标;若不存在,请说明理由.

来源:2018年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = a x 2 ( 2 a 3 4 ) x + 3 的图象经过点 A ( 4 , 0 ) ,与 y 轴交于点 B .在 x 轴上有一动点 C ( m 0 ) ( 0 < m < 4 ) ,过点 C x 轴的垂线交直线 AB 于点 E ,交该二次函数图象于点 D

(1)求 a 的值和直线 AB 的解析式;

(2)过点 D DF AB 于点 F ,设 ΔACE ΔDEF 的面积分别为 S 1 S 2 ,若 S 1 = 4 S 2 ,求 m 的值;

(3)点 H 是该二次函数图象上位于第一象限的动点,点 G 是线段 AB 上的动点,当四边形 DEGH 是平行四边形,且 DEGH 周长取最大值时,求点 G 的坐标.

来源:2018年四川省泸州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知直线 y = x + 3 x 轴、 y 轴分别相交于 A B 两点,抛物线 y = x 2 + bx + c 经过 A B 两点,点 M 在线段 OA 上,从 O 点出发,向点 A 以每秒1个单位的速度匀速运动;同时点 N 在线段 AB 上,从点 A 出发,向点 B 以每秒 2 个单位的速度匀速运动,连接 MN ,设运动时间为 t

(1)求抛物线解析式;

(2)当 t 为何值时, ΔAMN 为直角三角形;

(3)过 N NH / / y 轴交抛物线于 H ,连接 MH ,是否存在点 H 使 MH / / AB ,若存在,求出点 H 的坐标,若不存在,请说明理由.

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c x 轴于 A B 两点,交 y 轴于点 C ( 0 , 4 3 ) OA = 1 OB = 4 ,直线 l 过点 A ,交 y 轴于点 D ,交抛物线于点 E ,且满足 tan OAD = 3 4

(1)求抛物线的解析式;

(2)动点 P 从点 B 出发,沿 x 轴正方向以每秒2个单位长度的速度向点 A 运动,动点 Q 从点 A 出发,沿射线 AE 以每秒1个单位长度的速度向点 E 运动,当点 P 运动到点 A 时,点 Q 也停止运动,设运动时间为 t 秒.

①在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔADC ΔPQA 相似,若存在,求出 t 的值;若不存在,请说明理由.

②在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔAPQ ΔCAQ 的面积之和最大?若存在,求出 t 的值;若不存在,请说明理由.

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知抛物线的顶点为 ( 2 , 4 ) 并经过点 ( 2 , 4 ) ,点 A 在抛物线的对称轴上并且纵坐标为 3 2 ,抛物线交 y 轴于点 N .如图1.

(1)求抛物线的解析式;

(2)点 P 为抛物线对称轴上的一点, ΔANP 为等腰三角形,求点 P 的坐标;

(3)如图2,点 B 为直线 y = 2 上的一个动点,过点 B 的直线 l AB 垂直

①求证:直线 l 与抛物线总有两个交点;

②设直线 l 与抛物线交于点 C D (点 C 在左侧),分别过点 C D 作直线 y = 2 的垂线,垂足分别为 E F .求 EF 的长.

来源:2018年四川省广元市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = 1 2 x 2 + bx + c 与直线 y = 1 2 x + 3 交于 A B 两点,交 x 轴于 C D 两点,连接 AC BC ,已知 A ( 0 , 3 ) C ( 3 , 0 )

(1)求此抛物线的解析式;

(2)在抛物线对称轴 l 上找一点 M ,使 | MB MD | 的值最大,并求出这个最大值;

(3)点 P y 轴右侧抛物线上一动点,连接 PA ,过点 P PQ PA y 轴于点 Q ,问:是否存在点 P ,使得以 A P Q 为顶点的三角形与 ΔABC 相似?若存在,请求出所有符合条件的点 P 的坐标;若不存在,请说明理由.

来源:2018年四川省广安市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = a x 2 + bx + 3 的图象与 x 轴分别交于 A ( 1 , 0 ) B ( 3 , 0 ) 两点,与 y 轴交于点 C

(1)求此二次函数解析式;

(2)点 D 为抛物线的顶点,试判断 ΔBCD 的形状,并说明理由;

(3)将直线 BC 向上平移 t ( t > 0 ) 个单位,平移后的直线与抛物线交于 M N 两点(点 M y 轴的右侧),当 ΔAMN 为直角三角形时,求 t 的值.

来源:2018年四川省甘孜州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在等腰直角三角形 ABC 中, BAC = 90 ° ,点 A x 轴上,点 B y 轴上,点 C ( 3 , 1 ) ,二次函数 y = 1 3 x 2 + bx 3 2 的图象经过点 C

(1)求二次函数的解析式,并把解析式化成 y = a ( x h ) 2 + k 的形式;

(2)把 ΔABC 沿 x 轴正方向平移,当点 B 落在抛物线上时,求 ΔABC 扫过区域的面积;

(3)在抛物线上是否存在异于点 C 的点 P ,使 ΔABP 是以 AB 为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点 P 的坐标;如果不存在,请说明理由.

来源:2018年四川省德阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,抛物线经过原点 O ( 0 , 0 ) ,点 A ( 1 , 1 ) ,点 B ( 7 2 , 0 )

(1)求抛物线解析式;

(2)连接 OA ,过点 A AC OA 交抛物线于 C ,连接 OC ,求 ΔAOC 的面积;

(3)点 M y 轴右侧抛物线上一动点,连接 OM ,过点 M MN OM x 轴于点 N .问:是否存在点 M ,使以点 O M N 为顶点的三角形与(2)中的 ΔAOC 相似,若存在,求出点 M 的坐标;若不存在,说明理由.

来源:2018年四川省达州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,以直线 x = 5 2 对称轴的抛物线 y = a x 2 + bx + c 与直线 l : y = kx + m ( k > 0 ) 交于 A ( 1 , 1 ) B 两点,与 y 轴交于 C ( 0 , 5 ) ,直线 l y 轴交于点 D

(1)求抛物线的函数表达式;

(2)设直线 l 与抛物线的对称轴的交点为 F G 是抛物线上位于对称轴右侧的一点,若 AF FB = 3 4 ,且 ΔBCG ΔBCD 面积相等,求点 G 的坐标;

(3)若在 x 轴上有且仅有一点 P ,使 APB = 90 ° ,求 k 的值.

来源:2018年四川省成都市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式解答题