如图①,已知抛物线 y = a x 2 + bx + c 的图象经过点 A ( 0 , 3 ) 、 B ( 1 , 0 ) ,其对称轴为直线 l : x = 2 ,过点 A 作 AC / / x 轴交抛物线于点 C , ∠ AOB 的平分线交线段 AC 于点 E ,点 P 是抛物线上的一个动点,设其横坐标为 m .
(1)求抛物线的解析式;
(2)若动点 P 在直线 OE 下方的抛物线上,连接 PE 、 PO ,当 m 为何值时,四边形 AOPE 面积最大,并求出其最大值;
(3)如图②, F 是抛物线的对称轴 l 上的一点,在抛物线上是否存在点 P 使 ΔPOF 成为以点 P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点 P 的坐标;若不存在,请说明理由.
.如图13,D为O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. (1)求证:CD是O的切线; (2)过点B作O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求BE的长
选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分。 题甲:已知关于的方程的两根为、,且满足.求的值。 题乙:如图12,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,AD=2,BC=BD=3,AC=4. (1)求证:AC⊥BD (2)求△AOB的面积 我选做的是题
在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同。小明先从口袋里随机不放回地取出一个小球,记下数字为;小红在剩下有三个小球中随机取出一个小球,记下数字。 (1)计算由、确定的点(,)在函数图象上的概率; (2)小明、小红约定做一个游戏,其规则是:若、满足,则小明胜;若、满足,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?
.某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表:
(1)若与满足初中学过的某一函数关系,求函数的解析式; (2)现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费。则乙复印社每月收费(元)与复印页数(页)的函数关系为; (3)在给出的坐标系内画出(1)、(2)中的函数图象,并回答每月复印页数在1200左右应选择哪个复印社?
已知关于的方程组的解满足不等式,求实数的取值范围。