初中数学

已知函数为常数)的图象经过点

(1)求满足的关系式;

(2)设该函数图象的顶点坐标是,当的值变化时,求关于的函数解析式;

(3)若该函数的图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.

来源:2019年浙江省台州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,已知二次函数的图象经过点

(1)求的值和图象的顶点坐标.

(2)点在该二次函数图象上.

①当时,求的值;

②若点轴的距离小于2,请根据图象直接写出的取值范围.

来源:2019年浙江省宁波市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,正方形的边长为4,边分别在轴,轴的正半轴上,把正方形的内部及边上,横、纵坐标均为整数的点称为好点.点为抛物线的顶点.

(1)当时,求该抛物线下方(包括边界)的好点个数.

(2)当时,求该抛物线上的好点坐标.

(3)若点在正方形内部,该抛物线下方(包括边界)恰好存在8个好点,求的取值范围.

来源:2019年浙江省金华市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

已知抛物线轴有两个不同的交点.

(1)求的取值范围;

(2)若抛物线经过点和点,试比较的大小,并说明理由.

来源:2019年浙江省湖州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

设二次函数是实数).

(1)甲求得当时,;当时,;乙求得当时,.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.

(2)写出二次函数图象的对称轴,并求该函数的最小值(用含的代数式表示).

(3)已知二次函数的图象经过两点是实数),当时,求证:

来源:2019年浙江省杭州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

已知是常数,抛物线的对称轴是轴,并且与轴有两个交点.

(1)求的值;

(2)若点在物线上,且轴的距离是2,求点的坐标.

来源:2019年云南省中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

在平面直角坐标系中(如图),已知抛物线,其顶点为

(1)写出这条抛物线的开口方向、顶点的坐标,并说明它的变化情况;

(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.

①试求抛物线的“不动点”的坐标;

②平移抛物线,使所得新抛物线的顶点是该抛物线的“不动点”,其对称轴与轴交于点,且四边形是梯形,求新抛物线的表达式.

来源:2019年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

在平面直角坐标系中(如图).已知抛物线经过点和点,顶点为,点在其对称轴上且位于点下方,将线段绕点按顺时针方向旋转,点落在抛物线上的点处.

(1)求这条抛物线的表达式;

(2)求线段的长;

(3)将抛物线平移,使其顶点移到原点的位置,这时点落在点的位置,如果点轴上,且以为顶点的四边形面积为8,求点的坐标.

来源:2018年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx - 5 ( a 0 ) 经过点 A ( 4 , - 5 ) ,与 x 轴的负半轴交于点 B ,与 y 轴交于点 C ,且 OC = 5 OB ,抛物线的顶点为点 D

(1)求这条抛物线的表达式;

(2)联结 AB BC CD DA ,求四边形 ABCD 的面积;

(3)如果点 E y 轴的正半轴上,且 BEO = ABC ,求点 E 的坐标.

来源:2016年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

已知抛物线轴相交于两点(点在点的左侧),并与轴相交于点

(1)求三点的坐标,并求的面积;

(2)将抛物线向左或向右平移,得到抛物线,且轴相交于两点(点在点的左侧),并与轴相交于点,要使△的面积相等,求所有满足条件的抛物线的函数表达式.

来源:2018年陕西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

已知抛物线

(1)当时,求抛物线与轴的交点坐标及对称轴;

(2)①试说明无论为何值,抛物线一定经过两个定点,并求出这两个定点的坐标;

②将抛物线沿这两个定点所在直线翻折,得到抛物线,直接写出的表达式;

(3)若(2)中抛物线的顶点到轴的距离为2,求的值.

来源:2017年江西省中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

某班"数学兴趣小组"对函数 y = x 2 - 2 | x | 的图象和性质进行了探究,探究过程如下,请补充完整.

(1)自变量 x 的取值范围是全体实数, x y 的几组对应值列表如下:

x

- 3

- 5 2

- 2

- 1

0

1

2

5 2

3

y

3

5 4

m

- 1

0

- 1

0

5 4

3

其中, m =    

(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.

(3)观察函数图象,写出两条函数的性质.

(4)进一步探究函数图象发现:

①函数图象与 x 轴有    个交点,所以对应的方程 x 2 - 2 | x | = 0    个实数根;

②方程 x 2 - 2 | x | = 2    个实数根;

③关于 x 的方程 x 2 - 2 | x | = a 有4个实数根时, a 的取值范围是    

来源:2016年河南省中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

一次函数与二次函数的图象的一个交点坐标为,另一个交点是该二次函数图象的顶点.

(1)求的值;

(2)过点且垂直于轴的直线与二次函数的图象相交于两点,点为坐标原点,记,求关于的函数解析式,并求的最小值.

来源:2019年安徽省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线轴交于点,将点向右平移2个单位长度,得到点,点在抛物线上.

(1)求点的坐标(用含的式子表示);

(2)求抛物线的对称轴;

(3)已知点.若抛物线与线段恰有一个公共点,结合函数图象,求的取值范围.

来源:2019年北京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,直线轴,轴分别交于点,抛物线经过点,将点向右平移5个单位长度,得到点

(1)求点的坐标;

(2)求抛物线的对称轴;

(3)若抛物线与线段恰有一个公共点,结合函数图象,求的取值范围.

来源:2018年北京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题