二次函数 图象上部分点的坐标 对应值列表如下:
|
|
|
|
|
0 |
1 |
|
|
|
|
|
|
|
|
|
则该函数图象的对称轴是
A.直线 B.直线 C.直线 D.直线
如图,已知抛物线 与 轴交于 , 两点,与 轴交于点 ,点 的坐标为
(1)求 的值及抛物线的顶点坐标.
(2)点 是抛物线对称轴 上的一个动点,当 的值最小时,求点 的坐标.
已知函数 是常数, ,下列结论正确的是
A.当 时,函数图象过点
B.当 时,函数图象与 轴没有交点
C.若 ,则当 时, 随 的增大而减小
D.若 ,则当 时, 随 的增大而增大
在平面直角坐标系中,点 为原点,平行于 轴的直线与抛物线 相交于 , 两点(点 在第一象限),点 在 的延长线上.
(1)已知 ,点 的纵坐标为2.
①如图1,向右平移抛物线 使该抛物线过点 ,与 的延长线交于点 ,求 的长.
②如图2,若 ,过点 , 的抛物线 ,其顶点 在 轴上,求该抛物线的函数表达式.
(2)如图3,若 ,过 , , 三点的抛物线 ,顶点为 ,对应函数的二次项系数为 ,过点 作 轴,交抛物线 于 , 两点,求 的值,并直接写出 的值.
二次函数 ,当 且 时, 的最小值为 ,最大值为 ,则 的值为
A. B.2C. D.
如图,已知二次函数 , 为常数)的图象经过点 ,点 ,顶点为点 ,过点 作 轴,交 轴于点 ,交该二次函数图象于点 ,连接 .
(1)求该二次函数的解析式及点 的坐标;
(2)若将该二次函数图象向下平移 个单位,使平移后得到的二次函数图象的顶点落在 的内部(不包括 的边界),求 的取值范围;
(3)点 是直线 上的动点,若点 ,点 ,点 所构成的三角形与 相似,请直接写出所有点 的坐标(直接写出结果,不必写解答过程).
已知函数 , .在同一平面直角坐标系中.
(1)若函数 的图象过点 ,函数 的图象过点 ,求 , 的值.
(2)若函数 的图象经过 的顶点.
①求证: ;
②当 时,比较 , 的大小.
已知二次函数 的图象如图所示, ,则由抛物线的特征写出如下含有 、 、 三个字母的等式或不等式:① ;② ;③ ;④ .其中正确的个数是
A.4个B.3个C.2个D.1个
如图,已知抛物线 与反比例函数 的图象相交于点 ,且 点的横坐标为3,抛物线与 轴交于点 , 是抛物线 的顶点, 点是 轴上一动点,当 最小时, 点的坐标为 .
已知二次函数 (其中 是自变量),当 时, 随 的增大而增大,且 时, 的最大值为9,则 的值为
A.1或 B. 或 C. D.1
已知关于 的一元二次方程 .
(1)求证:无论 为任何非零实数,此方程总有两个实数根;
(2)若抛物线 与 轴交于 , 、 , 两点,且 ,求 的值;
(3)若 ,点 与 在(2)中的抛物线上(点 、 不重合),求代数式 的值.
二次函数 的图象与一次函数 的图象有且仅有一个交点,则实数 的取值范围是
A. B.
C. 或 D. 或