初中数学

(1)阅读理解

如图,点在反比例函数的图象上,连接,取线段的中点.分别过点轴的垂线,垂足为交反比例函数的图象于点.点的横坐标分别为

小红通过观察反比例函数的图象,并运用几何知识得出结论:

由此得出一个关于,之间数量关系的命题:

,则  

(2)证明命题

小东认为:可以通过“若,则”的思路证明上述命题.

小晴认为:可以通过“若,且,则”的思路证明上述命题.

请你选择一种方法证明(1)中的命题.

来源:2019年山东省威海市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

已知点 A ( a , m ) 在双曲线 y = 8 x 上且 m < 0 ,过点 A x 轴的垂线,垂足为 B

(1)如图1,当 a = - 2 时, P ( t , 0 ) x 轴上的动点,将点 B 绕点 P 顺时针旋转 90 ° 至点 C

①若 t = 1 ,直接写出点 C 的坐标;

②若双曲线 y = 8 x 经过点 C ,求 t 的值.

(2)如图2,将图1中的双曲线 y = 8 x ( x > 0 ) 沿 y 轴折叠得到双曲线 y = - 8 x ( x < 0 ) ,将线段 OA 绕点 O 旋转,点 A 刚好落在双曲线 y = - 8 x ( x < 0 ) 上的点 D ( d , n ) 处,求 m n 的数量关系.

来源:2018年湖北省武汉市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

阅读下面的材料:

如果函数满足:对于自变量的取值范围内的任意

(1)若,都有,则称是增函数;

(2)若,都有,则称是减函数.

例题:证明函数是减函数.

证明:设

.即

函数是减函数.

根据以上材料,解答下面的问题:

已知函数

(1)计算:    

(2)猜想:函数  函数(填“增”或“减”

(3)请仿照例题证明你的猜想.

来源:2019年山东省济宁市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图1,一次函数 y = - x + b 与反比例函数 y = k x ( k 0 ) 的图象交于点 A ( 1 , 3 ) B ( m , 1 ) ,与 x 轴交于点 D ,直线 OA 与反比例函数 y = k x ( k 0 ) 的图象的另一支交于点 C ,过点 B 作直线 l 垂直于 x 轴,点 E 是点 D 关于直线 l 的对称点.

(1) k =        

(2)判断点 B E C 是否在同一条直线上,并说明理由;

(3)如图2,已知点 F x 轴正半轴上, OF = 3 2 ,点 P 是反比例函数 y = k x ( k 0 ) 的图象位于第一象限部分上的点(点 P 在点 A 的上方), ABP = EBF ,则点 P 的坐标为 (      )

来源:2017年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,过原点的直线与反比例函数的图象交于两点,点在第一象限.点轴正半轴上,连结交反比例函数图象于点的平分线,过点的垂线,垂足为,连结.若的面积为8,则的值为  

来源:2019年浙江省宁波市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° ,顶点 A B 都在反比例函数 y = k x ( x > 0 ) 的图象上,直线 AC x 轴,垂足为 D ,连结 OA OC ,并延长 OC AB 于点 E ,当 AB = 2 OA 时,点 E 恰为 AB 的中点,若 AOD = 45 ° OA = 2 2

(1)求反比例函数的解析式;

(2)求 EOD 的度数.

来源:2020年江西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

模具厂计划生产面积为4,周长为的矩形模具.对于的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:

(1)建立函数模型

设矩形相邻两边的长分别为,由矩形的面积为4,得,即;由周长为,得,即.满足要求的应是两个函数图象在第  象限内交点的坐标.

(2)画出函数图象

函数的图象如图所示,而函数的图象可由直线平移得到.请在同一直角坐标系中直接画出直线

(3)平移直线,观察函数图象

①当直线平移到与函数的图象有唯一交点时,周长的值为  

②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长的取值范围.

(4)得出结论

若能生产出面积为4的矩形模具,则周长的取值范围为  

来源:2019年河南省中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

如图,已知一次函数 y = kx + b 的图象与 x 轴交于点 A ,与反比例函数 y = m x ( x < 0 ) 的图象交于点 B ( - 2 , n ) ,过点 B BC x 轴于点 C ,点 D ( 3 - 3 n , 1 ) 是该反比例函数图象上一点.

(1)求 m 的值;

(2)若 DBC = ABC ,求一次函数 y = kx + b 的表达式.

来源:2017年江苏省常州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,反比例函数 y = k x ( x > 0 ) 过点 A ( 3 , 4 ) ,直线 AC x 轴交于点 C ( 6 , 0 ) ,过点 C x 轴的垂线 BC 交反比例函数图象于点 B

(1)求 k 的值与 B 点的坐标;

(2)在平面内有点 D ,使得以 A B C D 四点为顶点的四边形为平行四边形,试写出符合条件的所有 D 点的坐标.

来源:2018年湖北省黄冈市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,一次函数 y = k 1 x + b ( k 1 0 ) 与反比例函数 y = k 2 x ( k 2 0 ) 的图象交于点 A ( 2 , 3 ) B ( n , - 1 )

(1)求反比例函数和一次函数的解析式;

(2)判断点 P ( - 2 , 1 ) 是否在一次函数 y = k 1 x + b 的图象上,并说明理由;

(3)写出不等式 k 1 x + b k 2 x 的解集.

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,正比例函数 y = 1 2 x 与反比例函数 y = k x ( x > 0 ) 的图象交于点 A ,过点 A AB y 轴于点 B OB = 4 ,点 C 在线段 AB 上,且 AC = OC

(1)求 k 的值及线段 BC 的长;

(2)点 P B 点上方 y 轴上一点,当 ΔPOC ΔPAC 的面积相等时,请求出点 P 的坐标.

来源:2021年山东省烟台市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数 y = 1 2 x + 5 y = - 2 x 的图象相交于点 A ,反比例函数 y = k x 的图象经过点 A

(1)求反比例函数的表达式;

(2)设一次函数 y = 1 2 x + 5 的图象与反比例函数 y = k x 的图象的另一个交点为 B ,连接 OB ,求 ΔABO 的面积.

来源:2020年山东省枣庄市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, A 点的坐标为 ( a , 6 ) AB x 轴于点 B cos OAB = = 3 5 ,反比例函数 y = k x 的图象的一支分别交 AO AB 于点 C D .延长 AO 交反比例函数的图象的另一支于点 E .已知点 D 的纵坐标为 3 2

(1)求反比例函数的解析式;

(2)求直线 EB 的解析式;

(3)求 S ΔOEB

来源:2018年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, A ( 4 , 3 ) 是反比例函数 y = k x 在第一象限图象上一点,连接 OA ,过 A AB / / x 轴,截取 AB = OA ( B A 右侧),连接 OB ,交反比例函数 y = k x 的图象于点 P

(1)求反比例函数 y = k x 的表达式;

(2)求点 B 的坐标;

(3)求 ΔOAP 的面积.

来源:2018年黑龙江省大庆市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,反比例函数 y k x k>0)的图象与半径为5的⊙ O交于 MN两点,△ MON的面积为3.5,若动点 Px轴上,则 PM+ PN的最小值是   

来源:2018年内蒙古通辽市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

初中数学反比例函数综合题试题