阅读下面的材料:
如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,
(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;
(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.
例题:证明函数f(x)=6x(x>0)是减函数.
证明:设0<x1<x2,
f(x1)-f(x2)=6x1-6x2=6x2-6x1x1x2=6(x2-x1)x1x2.
∵0<x1<x2,
∴x2-x1>0,x1x2>0.
∴6(x2-x1)x1x2>0.即f(x1)-f(x2)>0.
∴f(x1)>f(x2).
∴函数f(x)==6x(x>0)是减函数.
根据以上材料,解答下面的问题:
已知函数f(x)=1x2+x(x<0),
f(-1)=1(-1)2+(-1)=0,f(-2)=1(-2)2+(-2)=-74
(1)计算:f(-3)= -269 ,f(-4)= ;
(2)猜想:函数f(x)=1x2+x(x<0)是 函数(填“增”或“减” );
(3)请仿照例题证明你的猜想.
如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1,60)
某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.
为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共 名,其中小学生 名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为 名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.
如图,△ABC中,CD是边AB上的高,且.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.
计算:.