初中数学

如图,在平面直角坐标系 xOy 中,一次函数 y = 1 2 x + b 的图象分别与 x 轴、 y 轴交于点 A B ,与反比例函数 y = k x ( x > 0 ) 的图象交于点 C ,连接 OC .已知点 A ( - 4 , 0 ) AB = 2 BC

(1)求 b k 的值;

(2)求 ΔAOC 的面积.

来源:2021年江苏省常州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, AO BO AB y 轴, O 为坐标原点, A 的坐标为 ( n , 3 ) ,反比例函数 y 1 = k 1 x 的图象的一支过 A 点,反比例函数 y 2 = k 2 x 的图象的一支过 B 点,过 A AH x 轴于 H ,若 ΔAOH 的面积为 3 2

(1)求 n 的值;

(2)求反比例函数 y 2 的解析式.

来源:2021年湖南省常德市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,点 A ( 2 , n ) 和点 D 是反比例函数 y = m x ( m > 0 , x > 0 ) 图象上的两点,一次函数 y = kx + 3 ( k 0 ) 的图象经过点 A ,与 y 轴交于点 B ,与 x 轴交于点 C ,过点 D DE x 轴,垂足为 E ,连接 OA OD .已知 ΔOAB ΔODE 的面积满足 S ΔOAB : S ΔODE = 3 : 4

(1) S ΔOAB =        m =       

(2)已知点 P ( 6 , 0 ) 在线段 OE 上,当 PDE = CBO 时,求点 D 的坐标.

来源:2019年江苏省镇江市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1, OABC 的边 OC y 轴的正半轴上, OC = 3 A ( 2 , 1 ) ,反比例函数 y = k x ( x > 0 ) 的图象经过的 B

(1)求点 B 的坐标和反比例函数的关系式;

(2)如图2,直线 MN 分别与 x 轴、 y 轴的正半轴交于 M N 两点,若点 O 和点 B 关于直线 MN 成轴对称,求线段 ON 的长;

(3)如图3,将线段 OA 延长交 y = k x ( x > 0 ) 的图象于点 D ,过 B D 的直线分别交 x 轴、 y 轴于 E F 两点,请探究线段 ED BF 的数量关系,并说明理由.

来源:2017年山东省济南市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是矩形,点 A 在第四象限 y 1 = 2 x 的图象上,点 B 在第一象限 y 2 = k x 的图象上, AB x 轴于点 E ,点 C 与点 D y 轴上, AD = 3 2 S 矩形OCBE = 3 2 S 矩形ODAE

(1)求点 B 的坐标.

(2)若点 P x 轴上, S ΔBPE = 3 ,求直线 BP 的解析式.

来源:2019年辽宁省盘锦市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图已知函数 y = k x ( k > 0 , x > 0 ) 的图象与一次函数 y = mx + 5 ( m < 0 ) 的图象相交不同的点 A B ,过点 A AD x 轴于点 D ,连接 AO ,其中点 A 的横坐标为 x 0 ΔAOD 的面积为2.

(1)求 k 的值及 x 0 = 4 m 的值;

(2)记 [ ] 表示为不超过 x 的最大整数,例如: [ 1 . 4 ] = 1 [ 2 ] = 2 ,设 t = OD · DC ,若 3 2 < m < 5 4 ,求 [ m 2 · t ] 值.

来源:2018年湖南省株洲市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图,点 M 在函数 y = 3 x ( x > 0 ) 的图象上,过点 M 分别作 x 轴和 y 轴的平行线交函数 y = 1 x ( x > 0 ) 的图象于点 B C

(1)若点 M 的坐标为 ( 1 , 3 )

①求 B C 两点的坐标;

②求直线 BC 的解析式;

(2)求 ΔBMC 的面积.

来源:2018年湖南省湘潭市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图所示, Rt Δ PAB 的直角顶点 P ( 3 , 4 ) 在函数 y = k x ( x > 0 ) 的图象上,顶点 A B 在函数 y = t x ( x > 0 , 0 < t < k ) 的图象上, PA / / y 轴,连接 OP OA ,记 ΔOPA 的面积为 S ΔOPA ΔPAB 的面积为 S ΔPAB ,设 w = S ΔOPA S ΔPAB

①求 k 的值以及 w 关于 t 的表达式;

②若用 w max w min 分别表示函数 w 的最大值和最小值,令 T = w max + a 2 a ,其中 a 为实数,求 T min

来源:2017年湖南省株洲市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,已知反比例函数 y = k x 的图象经过点 A ( 4 , m ) AB x 轴,且 ΔAOB 的面积为2.

(1)求 k m 的值;

(2)若点 C ( x , y ) 也在反比例函数 y = k x 的图象上,当 3 x 1 时,求函数值 y 的取值范围.

来源:2017年湖南省常德市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

已知反比例函数 y = k x ( k 0 ) 的图象经过点 B ( 3 , 2 ) ,点 B 与点 C 关于原点 O 对称, BA x 轴于点 A CD x 轴于点 D

(1)求这个反比例函数的解析式;

(2)求 ΔACD 的面积.

来源:2017年广西百色市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,反比例函数 y = k x ( k 0 ) 的图象经过等边三角形 BOC 的顶点 B OC = 2 ,点 A 在反比例函数图象上,连接 AC OA

(1)求反比例函数 y = k x ( k 0 ) 的表达式;

(2)若四边形 ACBO 的面积是 3 3 ,求点 A 的坐标.

来源:2019年甘肃省兰州市中考数学试卷(a卷)
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,直角三角板ABC放在平面直角坐标系中(ACO点),直角边AB垂直x轴,垂足为Q,已知∠ACB=60°,点ACP均在反比例函数y的图象上,分别作PFx轴于FADy轴于D,延长DAFP交于点E,且点PEF的中点.

(1)求点B的坐标;

(2)求四边形AOPE的面积.

来源:2016年湖北省恩施州中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

如图,反比例函数 y k 1 x 与一次函数 yk 2 x+ b的图象交于 A(2,4), B(﹣4, m)两点.

(1)求 k 1k 2b的值;

(2)求△ AOB的面积;

(3)若 Mx 1y 1), Nx 2y 2)是反比例函数 y k 1 x 的图象上的两点,且 x 1x 2y 1y 2,指出点 MN各位于哪个象限.

来源:2017年内蒙古巴彦淖尔市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,反比例函数 y = k x ( x > 0 ) 的图象与直线交于点,其两边分别与两坐标轴的正半轴交于点,四边形的面积为6.

(1)求的值;

(2)点在反比例函数 y = k x ( x > 0 ) 的图象上,若点的横坐标为3,,其两边分别与轴的正半轴,直线交于点,问是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.

来源:2016年福建省莆田市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,反比例函数的图象经过点,点轴的负半轴上,轴于点为线段的中点.

(1)  ,点的坐标为  

(2)若点为线段上的一个动点,过点轴,交反比例函数图象于点,求面积的最大值.

来源:2020年江苏省连云港市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

初中数学反比例函数系数k的几何意义解答题