如图,反比例函数 y = k x ( x > 0 ) 的图象与直线交于点,,其两边分别与两坐标轴的正半轴交于点,,四边形的面积为6.
(1)求的值;
(2)点在反比例函数 y = k x ( x > 0 ) 的图象上,若点的横坐标为3,,其两边分别与轴的正半轴,直线交于点,,问是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.
如图,在矩形ABCD中,点O在对角线AC上,以 OA长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE. (1)求证:CE是⊙O的切线; (2)若tan∠ACB=,AE=7,求⊙O的直径.
某网站出售一种毛绒兔玩具,试销中发现这种玩具每个获利x元时,一天需销售(60-x)个,如果要使一天出售该种玩具获得最大销售利润,那么每个玩具应获利多少元?
如图,在奥林匹克公园的广场上空飘着一只汽球P,A、B是地面上的两点,在A处看汽球的仰角∠PAB=45°,在拴汽球的B处看汽球的仰角∠PBA=60°,已知绳长PB=10米,求A、B两点之间的距离.(精确到0.1米,参考数据:)
如图,在矩形ABCD中,E为BC上一点,DF⊥AE于点F. (1)求证:ΔABE∽ΔDFA; (2)若AB=6,AD=12,BE=8,求DF的长
某区为发展教育事业,加强了对教育经费的投入,2008年投入1000万元,2010年投入了1210万元.若教育经费每年增长的百分率相同, (1)求每年平均增长的百分率; (2)按此年平均增长率,预计2011年该区教育经费应投入多少万元?