某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的 ,乙仓库所存原料的 ,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.
(1)求甲、乙两仓库各存放原料多少吨?
(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元 吨和100元 吨.经协商,从甲仓库到工厂的运价可优惠 元 吨 ,从乙仓库到工厂的运价不变,设从甲仓库运 吨原料到工厂,请求出总运费 关于 的函数解析式(不要求写出 的取值范围);
(3)在(2)的条件下,请根据函数的性质说明:随着 的增大, 的变化情况.
首条贯通丝绸之路经济带的高铁线 宝兰客专进入全线拉通试验阶段.宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义.试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为 (小时),两车之间的距离为 (千米),图中的折线表示 与 之间的函数关系,根据图象进行以下探究:
(信息读取)
(1)西宁到西安两地相距 千米,两车出发后 小时相遇;
(2)普通列车到达终点共需 小时,普通列车的速度是 千米 小时.
(解决问题)
(3)求动车的速度;
(4)普通列车行驶 小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安?
草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量 (千克)与销售单价 (元)符合一次函数关系,如图是 与 的函数关系图象.
(1)求 与 的函数解析式(也称关系式);
(2)设该水果销售店试销草莓获得的利润为 元,求 的最大值.
列方程(组)及不等式解应用题
春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
(1)甲乙两种图书的售价分别为每本多少元?
(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.
“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,小红距家的距离 随时间 变化的函数图象大致如图所示.
(1)小红从甲地到乙地骑车的速度为 ;
(2)当 时,求出路程 关于时间 的函数解析式;并求乙地离小红家多少千米?
甲、乙两人分别从 , 两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达 地后,乙继续前行.设出发 后,两人相距 ,图中折线表示从两人出发至乙到达 地的过程中 与 之间的函数关系.
根据图中信息,求:
(1)点 的坐标,并说明它的实际意义;
(2)甲、乙两人的速度.
春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物的方式进行消毒.在对某宿舍进行消毒的过程中,先经过 的集中药物喷洒,再封闭宿舍 ,然后打开门窗进行通风,室内每立方米空气中含药量 与药物在空气中的持续时间 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是
A.经过 集中喷洒药物,室内空气中的含药量最高达到
B.室内空气中的含药量不低于 的持续时间达到了
C.当室内空气中的含药量不低于 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效
D.当室内空气中的含药量低于 时,对人体才是安全的,所以从室内空气中的含药量达到 开始,需经过 后,学生才能进入室内
快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.
(1)求甲、乙两种型号的机器人每台的价格各是多少万元;
(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?
、 两地相距 ,甲乙两人沿同一条路线从 地到 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以 的速度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开 地的距离 与时间 的关系如图所示,则甲出发 小时后和乙相遇.
为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量 (单位:台)和销售单价 (单位:万元)成一次函数关系.
(1)求年销售量 与销售单价 的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?
数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度 时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到 时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至 时,制冷再次停止, ,按照以上方式循环进行.
同学们记录了 内15个时间点冷柜中的温度 随时间 的变化情况,制成下表:
时间 |
|
4 |
8 |
10 |
16 |
20 |
21 |
22 |
23 |
24 |
28 |
30 |
36 |
40 |
42 |
44 |
|
温度 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)通过分析发现,冷柜中的温度 是时间 的函数.
①当 时,写出一个符合表中数据的函数解析式 ;
②当 时,写出一个符合表中数据的函数解析式 ;
(2) 的值为 ;
(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余数据对应的点,并画出当 时温度 随时间 变化的函数图象.
某蔬菜加工公司先后两批次收购蒜薹 tái 共100吨.第一批蒜薹价格为4000元 吨;因蒜薹大量上市,第二批价格跌至1000元 吨.这两批蒜薹共用去16万元.
(1)求两批次购进蒜薹各多少吨?
(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
, 两地相距 ,甲、乙两人从两地出发相向而行,甲先出发.图中 , 表示两人离 地的距离 与时间 的关系,请结合图象解答下列问题:
(1)表示乙离 地的距离与时间关系的图象是 (填 或 ;甲的速度是 ,乙的速度是 ;
(2)甲出发多少小时两人恰好相距 ?