为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量 y (单位:台)和销售单价 x (单位:万元)成一次函数关系.
(1)求年销售量 y 与销售单价 x 的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?
【本小题满分8分】如图,在方格网中已知格点△ABC和点C. (1)画和△ABC关于点O成中心对称; (2)请在方格网中标出所有使以点A、O、、D为顶点的四边形是平行四边形的D点.
【本小题满分6分】计算:.
如图1,二次函数的图象与轴分别交于A、B两点,与轴交于点C.若tan∠ABC=3,一元二次方程的两根为-8、2. (1)求二次函数的解析式; (2)直线绕点A以AB为起始位置顺时针旋转到AC位置停止,与线段BC交于点D,P是AD的中点. ①求点P的运动路程; ②如图2,过点D作DE垂直轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在运动过程中,∠EPF的大小是否改变?请说明理由; (3)在(2)的条件下,连结,求△PEF周长的最小值.
已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O于点E. (1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由; (2)如图2,过点E作⊙O的切线,交AC的延长线于点F. ①若CF=CD时,求sin∠CAB的值; ②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)
如图,正比例函数 y = 2 x 的图象与反比例函数 y = k x 的图象交于 A 、 B 两点,过点 A 作 A C 垂直 x 轴于点 C ,连结 B C .若 △ A B C 的面积为 2 . (1)求k的值; (2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.