定义:在平面直角坐标系中,一个图形先向右平移 个单位,再绕原点按顺时针方向旋转 角度,这样的图形运动叫作图形的 变换.
如图,等边 的边长为1,点 在第一象限,点 与原点 重合,点 在 轴的正半轴上.△ 就是 经 变换后所得的图形.
若 经 变换后得△ ,△ 经 变换后得△ ,△ 经 变换后得△ ,依此类推
△ 经 变换后得△ ,则点 的坐标是 ,点 的坐标是 .
如图,在平面直角坐标系中,已知 经过原点 ,与 轴、 轴分别交于 、 两点, 点坐标为 , , 与 交于点 , ,则图中阴影部分面积为 .(结果保留根号和
中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点 ,“马”位于点 ,则“卒”位于点 .
已知正方形的对称中心在坐标原点,顶点 A、 B、 C、 D按逆时针依次排列,若 A点的坐标为(2, ),则 B点与 D点的坐标分别为( )
A. |
(﹣2, ),(2,﹣ ) |
B. |
(﹣ ,2),( ,﹣2) |
C. |
(﹣ ,2),(2,﹣ ) |
D. |
(- , )( , ) |
如图,在直角坐标系中,点 在函数 的图象上, 轴于点 , 的垂直平分线与 轴交于点 ,与函数 的图象交于点 ,连接 , , , ,则四边形 的面积等于
A.2B. C.4D.
如图,直线 为 ,过点 作 轴,与直线 交于点 ,以原点 为圆心, 长为半径画圆弧交 轴于点 ;再作 轴,交直线 于点 ,以原点 为圆心, 长为半径画圆弧交 轴于点 ; ,按此作法进行下去,则点 的坐标为 .
一组正方形按如图所示的方式放置,其中顶点 在 轴上,顶点 、 、 、 、 、 、 在 轴上,已知正方形 的边长为1, , 则正方形 的边长是
A. B. C. D.
如图,在平面直角坐标系中,点 的坐标是 ,点 的坐标是 ,点 、 在以 为直径的半圆 上,且四边形 是平行四边形,则点 的坐标为 .
等腰三角形 在平面直角坐标系中的位置如图所示,已知点 ,点 在原点, ,把等腰三角形 沿 轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置② 依此规律,第15次翻转后点 的横坐标是 .
如图,在平面直角坐标系中,点 , , , 和 , , , 分别在直线 和 轴上.△ ,△ ,△ , 都是等腰直角三角形.如果点 ,那么点 的纵坐标是 .
如图,在直角坐标系中,点 A, B分别在 x轴和 y轴上,点 A的坐标为(﹣2,0),∠ ABO=30°,线段 PQ的端点 P从点 O出发,沿△ OBA的边按 O→ B→ A→ O运动一周,同时另一端点 Q随之在 x轴的非负半轴上运动,如果 PQ=2 ,那么当 P点运动一周时,点 Q运动的总路程是( )
A. |
4 |
B. |
6 |
C. |
6 |
D. |
8 |
在平面直角坐标系中,点 P( x, y)经过某种变换后得到点 P'(﹣ y+1, x+2),我们把点 P'(﹣ y+1, x+2)叫做点 P( x, y)的终结点.已知点 P 1的终结点为 P 2,点 P 2的终结点为 P 3,点 P 3的终结点为 P 4,这样依次得到 P 1、 P 2、 P 3、 P 4、… P n、…,若点 P 1的坐标为(2,0),则点 P 2017的坐标为 .