如图,在平面直角坐标系中,菱形 的边 在 轴上,点 坐标 ,点 在 轴正半轴上,且 ,点 从原点 出发,以每秒一个单位长度的速度沿 轴正方向移动,移动时间为 秒,过点 作平行于 轴的直线 ,直线 扫过四边形 的面积为 .
(1)求点 坐标.
(2)求 关于 的函数关系式.
(3)在直线 移动过程中, 上是否存在一点 ,使以 、 、 为顶点的三角形是等腰直角三角形?若存在,直接写出 点的坐标;若不存在,请说明理由.
如图1,已知 , 轴, ,点 的坐标为 ,点 的坐标为 ,点 在第四象限,点 是 边上的一个动点.
(1)若点 在边 上, ,求点 的坐标.
(2)若点 在边 , 上,点 关于坐标轴对称的点 落在直线 上,求点 的坐标.
(3)若点 在边 , , 上,点 是 与 轴的交点,如图2,过点 作 轴的平行线 ,过点 作 轴的平行线 ,它们相交于点 ,将 沿直线 翻折,当点 的对应点落在坐标轴上时,求点 的坐标.(直接写出答案)
已知:在平面直角坐标系中,点 为坐标原点,点 在 轴的负半轴上,直线 与 轴、 轴分别交于 、 两点,四边形 为菱形.
(1)如图1,求点 的坐标;
(2)如图2,连接 ,点 为 内一点,连接 、 , 与 交于点 ,且 ,点 在线段 上,点 在线段 上,且 ,连接 、 ,若 ,求 的值;
(3)如图3,在(2)的条件下,当 时,求点 的坐标.
如图,在平面直角坐标系中, 轴,垂足为 B,将△ ABO绕点 A逆时针旋转到△ AB 1 O 1的位置,使点 B的对应点 B 1落在直线 x上,再将△ AB 1 O 1绕点 B 1逆时针旋转到△ A 1 B 1 O 2的位置,使点 O 1的对应点 O 2也落在直线 x上,以此进行下去…若点 B的坐标为(0,3),则点 B 21的纵坐标为 .
如图, 在平面直角坐标系中, 把矩形 沿对角线 所在直线折叠, 点 落在点 处, 与 轴相交于点 ,矩形 的边 , 的长是关于 的一元二次方程 的两个根, 且 .
(1) 求线段 , 的长;
(2) 求证: ,并求出线段 的长;
(3) 直接写出点 的坐标;
(4) 若 是直线 上一个动点, 在坐标平面内是否存在点 ,使以点 , , , 为顶点的四边形是菱形?若存在, 请直接写出 点的坐标;若不存在, 请说明理由 .
如图,在平面直角坐标系中, 为坐标原点,点 的坐标为 ,菱形 的顶点 , 都在第一象限, ,将菱形绕点 按顺时针方向旋转角 得到菱形 (点 的对应点为点 , 与 交于点 ,连接 .
(1)求点 的坐标.
(2)当 时,求 的长.
(3)求证: 平分 .
(4)连接 并延长交 轴于点 ,当点 的坐标为 时,求点 的坐标.
如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上. 且 ,OB,OC的长分别是一元二次方程 的两个根 .
(1)求点A和点B的坐标.
(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知 时,直线l恰好过点C.当 时,求m关于t的函数关系式.
(3)当 时,请直接写出点P的坐标.
如图,△ ,△ ,△ , ,△ 都是斜边在 轴上的等腰直角三角形,点 , , , , 都在 轴上,点 , , , , 都在反比例函数 的图象上,则点 的坐标为 .(用含有正整数 的式子表示)
如图1,平面直角坐标系 中,等腰 的底边 在 轴上, ,顶点 在 的正半轴上, ,一动点 从 出发,以每秒1个单位的速度沿 向左运动,到达 的中点停止.另一动点 从点 出发,以相同的速度沿 向左运动,到达点 停止.已知点 、 同时出发,以 为边作正方形 ,使正方形 和 在 的同侧,设运动的时间为 秒 .
(1)当点 落在 边上时,求 的值;
(2)设正方形 与 重叠面积为 ,请问是否存在 值,使得 ?若存在,求出 值;若不存在,请说明理由;
(3)如图2,取 的中点 ,连结 ,当点 、 开始运动时,点 从点 出发,以每秒 个单位的速度沿 运动,到达点 停止运动.请问在点 的整个运动过程中,点 可能在正方形 内(含边界)吗?如果可能,求出点 在正方形 内(含边界)的时长;若不可能,请说明理由.
如图,在矩形 中,点 为坐标原点,点 的坐标为 ,点 、 在坐标轴上,点 在 边上,直线 ,直线 .
(1)分别求直线 与 轴,直线 与 的交点坐标;
(2)已知点 在第一象限,且是直线 上的点,若 是等腰直角三角形,求点 的坐标;
(3)我们把直线 和直线 上的点所组成的图形为图形 .已知矩形 的顶点 在图形 上, 是坐标平面内的点,且 点的横坐标为 ,请直接写出 的取值范围(不用说明理由).
如图,在平面直角坐标系中,菱形 的顶点 在第二象限,其余顶点都在第一象限, 轴, , .过点 作 ,垂足为 , .反比例函数 的图象经过点 ,与边 交于点 ,连接 , , .若 ,则 的值为
A. |
|
B. |
|
C. |
7 |
D. |
|
如图,点 在直线 上,点 的横坐标为2,过点 作 ,交 轴于点 ,以 为边,向右作正方形 ,延长 交 轴于点 ;以 为边,向右作正方形 ,延长 交 轴于点 ;以 为边,向右作正方形 ,延长 交 轴于点 ; ;照这个规律进行下去,则第 个正方形 的边长为
(结果用含正整数 的代数式表示).
在平面直角坐标系 中,对于 、 两点,若在 轴上存在点 ,使得 ,且 ,则称 、 两点互相关联,把其中一个点叫做另一个点的关联点.已知点 、 ,点 在一次函数 的图象上.
(1)①如图,在点 、 、 中,点 的关联点是 (填" "、" "或" " ;
②若在线段 上存在点 的关联点 ,则点 的坐标是 ;
(2)若在线段 上存在点 的关联点 ,求实数 的取值范围;
(3)分别以点 、 为圆心,1为半径作 、 .若对 上的任意一点 ,在 上总存在点 ,使得 、 两点互相关联,请写出点 的坐标.
阅读理解:在平面直角坐标系中,若两点 、 的坐标分别是 , 、
, ,则 、 这两点间的距离为 .如 , ,则 .
对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.
解决问题:如图,已知在平面直角坐标系 中,直线 交 轴于点 ,点 关于 轴的对称点为点 ,过点 作直线 平行于 轴.
(1)到点 的距离等于线段 长度的点的轨迹是 ;
(2)若动点 满足到直线 的距离等于线段 的长度,求动点 轨迹的函数表达式;
问题拓展:(3)若(2)中的动点 的轨迹与直线 交于 、 两点,分别过 、 作直线 的垂线,垂足分别是 、 ,求证:
① 是 外接圆的切线;
② 为定值.