高中数学

(本小题满分14分)如图,四棱锥中,,底面为梯形,,且.

(1)求证:;
(2)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知各项不为零的数列的前项和为,且满足.
(1)求数列的通项公式;
(2)设数列满足,求数列的前项和.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一个几何体的三视图如图所示,则该几何体的体积为  

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分13分)如图,在平面直角坐标系中,已知椭圆:,设是椭圆上的任一点,从原点向圆作两条切线,分别交椭圆于点

(1)若直线互相垂直,求圆的方程;
(2)若直线的斜率存在,并记为,求证:
(3)试问是否为定值?若是,求出该值;若不是,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【改编】(本小题满分13分)已知函数
(1)求函数的单调区间;
(2)当时,,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【改编】(本小题满分13分)已知F1、F2分别为椭圆C:(a>b>0)的左、右焦点, 且离心率为,点在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在斜率为k的直线与椭圆C交于不同的两点M、N,使直线的倾斜角互补,且直线是否恒过定点,若存在,求出该定点的坐标;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【原创】(本小题满分12分)已知.
(Ⅰ)求函数的最小正周期和对称中心;
(Ⅱ)将函数的图象向右平移个单位,得到函数的图象,当时,方程有实数解,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点。
(1)求双曲线的方程;
(2)若直线与椭圆及双曲线都恒有两个不同的交点,且L与的两个焦点A和B满足(其中O为原点),求的取值范围。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(1)求的极值;
(2)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某果园要将一批水果用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由果园承担.
若果园恰能在约定日期(日)将水果送到,则销售商一次性支付给果园20万元; 若在约定日期前送到,每提前一天销售商将多支付给果园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给果园1万元.
为保证水果新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送水果,已知下表内的信息:

      统计信息
汽车行驶路线
不堵车的情况下到达城市乙所需 时间(天)
堵车的情况下到达城市乙所需时间(天)
堵车的概率
运费(万元)
公路1
2
3


公路2
1
4


 
(注:毛利润销售商支付给果园的费用运费)
(1)记汽车走公路1时果园获得的毛利润为(单位:万元),求的分布列和数学期望;
(2)假设你是果园的决策者,你选择哪条公路运送水果有可能让果园获得的毛利润更多?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设椭圆的左、右焦点分别是,下顶点为,线段的中点为为坐标原点),如图.若抛物线轴的交点为,且经过两点.

(Ⅰ)求椭圆的方程;
(Ⅱ)设为抛物线上的一动点,过点作抛物线的切线交椭圆两点,求面积的最大值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对定义在区间D上的函数,如果对任意,都有成立,那么称函数在区间D上可被替代,D称为“替代区间”.给出以下命题:
在区间上可被替代;
可被替代的一个“替代区间”为
在区间可被替代,则
,则存在实数,使得在区间 上被替代;
其中真命题的有           

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数).
(1)当时,求过点且与曲线相切的切线方程;
(2)求函数的单调递增区间;
(3)若函数有两个极值点,且,记表示不大于的最大整数,试比较的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知定点,定直线,动点与点的距离是它到直线的距离的.设点的轨迹为,过点的直线交两点,直线与直线分别相交于两点.
(1)求的方程;
(2)以为直径的圆是否恒过一定点?若是,求出定点坐标;若不是,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;
(3)过圆上任意一点作圆的切线交双曲线两点,中点为,求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学试题