(本小题满分14分)如图,四棱锥中,,底面为梯形,,,且,.
(1)求证:;
(2)求二面角的余弦值.
(本小题满分14分)已知各项不为零的数列的前项和为,且满足.
(1)求数列的通项公式;
(2)设数列满足,求数列的前项和.
(本小题满分13分)如图,在平面直角坐标系中,已知椭圆:,设是椭圆上的任一点,从原点向圆:作两条切线,分别交椭圆于点,.
(1)若直线,互相垂直,求圆的方程;
(2)若直线,的斜率存在,并记为,,求证:;
(3)试问是否为定值?若是,求出该值;若不是,说明理由.
【改编】(本小题满分13分)已知函数.
(1)求函数的单调区间;
(2)当时,,求实数的取值范围.
【改编】(本小题满分13分)已知F1、F2分别为椭圆C:(a>b>0)的左、右焦点, 且离心率为,点在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在斜率为k的直线与椭圆C交于不同的两点M、N,使直线与的倾斜角互补,且直线是否恒过定点,若存在,求出该定点的坐标;若不存在,说明理由.
【原创】(本小题满分12分)已知.
(Ⅰ)求函数的最小正周期和对称中心;
(Ⅱ)将函数的图象向右平移个单位,得到函数的图象,当时,方程有实数解,求实数的取值范围.
已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点。
(1)求双曲线的方程;
(2)若直线与椭圆及双曲线都恒有两个不同的交点,且L与的两个焦点A和B满足(其中O为原点),求的取值范围。
(本小题满分14分)若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).
(1)求的极值;
(2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
某果园要将一批水果用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由果园承担.
若果园恰能在约定日期(月日)将水果送到,则销售商一次性支付给果园20万元; 若在约定日期前送到,每提前一天销售商将多支付给果园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给果园1万元.
为保证水果新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送水果,已知下表内的信息:
统计信息 汽车行驶路线 |
不堵车的情况下到达城市乙所需 时间(天) |
堵车的情况下到达城市乙所需时间(天) |
堵车的概率 |
运费(万元) |
公路1 |
2 |
3 |
||
公路2 |
1 |
4 |
(注:毛利润销售商支付给果园的费用运费)
(1)记汽车走公路1时果园获得的毛利润为(单位:万元),求的分布列和数学期望;
(2)假设你是果园的决策者,你选择哪条公路运送水果有可能让果园获得的毛利润更多?
设椭圆:的左、右焦点分别是、,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过、两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于、两点,求面积的最大值.
对定义在区间D上的函数和,如果对任意,都有成立,那么称函数在区间D上可被替代,D称为“替代区间”.给出以下命题:
①在区间上可被替代;
②可被替代的一个“替代区间”为;
③在区间可被替代,则;
④,则存在实数,使得在区间 上被替代;
其中真命题的有
设函数().
(1)当时,求过点且与曲线相切的切线方程;
(2)求函数的单调递增区间;
(3)若函数有两个极值点,,且,记表示不大于的最大整数,试比较与的大小.
已知定点,,定直线:,动点与点的距离是它到直线的距离的.设点的轨迹为,过点的直线交于、两点,直线、与直线分别相交于、两点.
(1)求的方程;
(2)以为直径的圆是否恒过一定点?若是,求出定点坐标;若不是,请说明理由.
已知点、为双曲线:的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是.
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为、,求的值;
(3)过圆上任意一点作圆的切线交双曲线于、两点,中点为,求证:.