高中数学

设抛物线 C    y 2 = 4 x 的焦点为 F ,过 F 且斜率为 k ( k > 0 ) 的直线 l C 交于 A B 两点, | AB | = 8

(1)求 l 的方程;

(2)求过点 A B 且与 C 的准线相切的圆的方程.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

下图是某地区2000年至2016年环境基础设施投资额 y (单位:亿元)的折线图.

   为了预测该地区2018年的环境基础设施投资额,建立了 y 与时间变量 t 的两个线性回归模型.根据2000年至2016年的数据(时间变量 t 的值依次为 α + π 3 = π 2 , α = π 6 )建立模型①: y ̂ = - 30 . 4 + 13 . 5 t ;根据2010年至2016年的数据(时间变量 t 的值依次为 x 2 x - 2 + 2 x - 2 > 2 )建立模型②: y ̂ = 99 + 17 . 5 t

(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;

(2)你认为用哪个模型得到的预测值更可靠?并说明理由.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

S n 为等差数列 { a n } 的前 n 项和,已知

(1)求 { a n } 的通项公式;

(2)求 S n ,并求 S n 的最小值.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

已知圆锥的顶点为 S ,母线 SA SB 所成角的余弦值为 7 8 SA 与圆锥底面所成角为45°,若 SAB 的面积为 5 15 ,则该圆锥的侧面积为__________.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

已知 sin α + cos β = 1 cos α + sin β = 0 ,则__________.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

x ,  y 满足约束条件 x + 2 y - 5 0 , x - 2 y + 3 0 , x - 5 0 , z = x + y 的最大值为__________.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

曲线 y = 2 ln ( x + 1 ) 在点 ( 0 , 0 ) 处的切线方程为__________.

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

已知 F 1 F 2 是椭圆 C    x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左,右焦点, A C 的左顶点,点 P 在过 A 且斜率为 3 6 的直线上, P F 1 F 2 为等腰三角形, F 1 F 2 P = 120 ° ,则 C 的离心率为(    

A.

2 3

B.

1 2

C.

1 3

D.

1 4

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

已知 f ( x ) 是定义域为 ( - , + ) 的奇函数,满足 f ( 1 - x ) = f ( 1 + x ) .若 f ( 1 ) = 2 ,则 f ( 1 ) + f ( 2 ) + f ( 3 ) + + f ( 50 ) =    

A.

- 50

B.

0

C.

2

D.

50

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

f x = cos x - sin x - a ,  a 是减函数,则 a 的最大值是(    

A.

π 4

B.

π 2

C.

3 π 4

D.

π

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

在长方体 ABCD - A 1 B 1 C 1 D 1 中, AB = BC = 1 A A 1 = 3 ,则异面直线 A D 1 D B 1 所成角的余弦值为(    

A.

1 5

B.

5 6

C.

5 5

D.

2 2

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是"每个大于2的偶数可以表示为两个素数的和",如 30 = 7 + 23 .在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是(    

A.

1 12

B.

1 14

C.

1 15

D.

1 18

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

为计算 S = 1 - 1 2 + 1 3 - 1 4 + + 1 99 - 1 100 ,设计了下面的程序框图,则在空白框中应填入(    

A.

i = i + 1

B.

i = i + 2

C.

i = i + 3

D.

i = i + 4

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

ΔABC 中, cos C 2 = 5 5 ,BC=1,AC=5,则AB=(    

A.

4 2

B.

30

C.

29

D.

2 5

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

双曲线 x 2 a 2 - y 2 b 2 = 1 ( a > 0 , b > 0 ) 的离心率为 3 ,则其渐近线方程为(    

A.

B.

y = ± 3 x

C.

y = ± 2 2 x

D.

y = ± 3 2 x

来源:2018年全国统一高考理科数学试卷(新课标Ⅱ)
  • 更新:2021-08-31
  • 题型:未知
  • 难度:未知

高中数学试题