高中数学

已知为椭圆上两动点,分别为其左右焦点,直线过点,且不垂直于轴,的周长为,且椭圆的短轴长为
(1)求椭圆的标准方程;
(2)已知点为椭圆的左端点,连接并延长交直线于点.求证:直线过定点.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知圆,圆
(1)若过点的直线被圆截得的弦长为,求直线的方程;
(2)圆是以1为半径,圆心在圆上移动的动圆 ,若圆上任意一点分别作圆 的两条切线,切点为,求的取值范围 ;



 

 

(3)若动圆同时平分圆的周长、圆的周长,则动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.



  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列{an}的前n项和,数列{bn}满足b1=1,b3+b7=18,且(n≥2).(1)求数列{an}和{bn}的通项公式;(2)若,求数列{cn}的前n项和Tn.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.(为常数)
(1)当时,①求的单调增区间;②试比较的大小;
(2),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求的值;
(2)若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知⊙O′过定点A(0,p)(p>0),圆心O′在抛物线C:x2=2py(p>0)上运动,MN为圆O′在x轴上所截得的弦.

(1)当O′点运动时,|MN|是否有变化?并证明你的结论;
(2)当|OA|是|OM|与|ON|的等差中项时,试判断抛物线C的准线与圆O′的位置关系,并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数,已知曲线在点处的切线方程是
(1)求的值;并求出函数的单调区间;
(2)求函数在区间上的最值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设数列的前n项和为,且).
(1)求的值;
(2)猜想的表达式,并加以证明。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.

(1)求椭圆的离心率;
(2)过且与AB垂直的直线交椭圆于P、Q,若的面积是 ,求此时椭圆的方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数.
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)求函数上的最大值与最小值;
(2)若时,函数的图像恒在直线上方,求实数的取值范围;
(3)证明:当时,

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,( a为常数,e为自然对数的底).
(1)
(2)时取得极小值,试确定a的取值范围;
(3)在(2)的条件下,设的极大值构成的函数,将a换元为x,试判断是否能与(m为确定的常数)相切,并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在数列中,,且前n项的算术平均数等于第n项的倍().
(1)写出此数列的前5项;
(2)归纳猜想的通项公式,并用数学归纳法证明.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分.曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=,|AF2|=

(1)求曲线C1和C2的方程;
(2)设点C是C2上一点,若|CF1|=|CF2|,求△CF1F2的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).
(1)求双曲线C的方程;
(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学解答题