在平面直角坐标系中,已知圆,圆. (1)若过点的直线被圆截得的弦长为,求直线的方程; (2)圆是以1为半径,圆心在圆:上移动的动圆 ,若圆上任意一点分别作圆 的两条切线,切点为,求的取值范围 ;
(3)若动圆同时平分圆的周长、圆的周长,则动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
(本小题满分16分)设数列的前n项和为,数列满足: ,且数列的前n项和为.(1) 求的值;(2) 求证:数列是等比数列;(3) 抽去数列中的第1项,第4项,第7项,……,第3n-2项,……余下的项顺序不变,组成一个新数列,若的前n项和为,求证:.
(本小题满分15分)已知椭圆的左焦点为F,左右顶点分别为A、C,上顶点为B,过F,B,C三点作,其中圆心P的坐标为.(1) 若椭圆的离心率,求的方程;(2)若的圆心在直线上,求椭圆的方程.
(本小题满分15分)已知(1)当时,求函数的最小正周期;(2)当∥时,求的值.
(本小题满分14分)某工厂三个车间共有工人1000名,各车间男、女工人数如下表:
已知在全厂工人中随机抽取1名,抽到第二车间男工的概率是0.15.(1)求的值;(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?(3)已知,求第三车间中女工比男工少的概率.
(本小题满分14分)如图ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点.求证:(1)PA//平面BDE;(2)平面PAC平面BDE.