高中数学

(本小题满分12分)我们把一系列向量按次序排成一列,称之为向量列,记作,已知向量列满足:
(1)证明:数列是等比数列;
(2)设表示向量间的夹角,若,对于任意正整数,不等式恒成立,求实数的范围
(3)设,问数列中是否存在最小项?若存在,求出最小项;若不存在,请说明理由

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)求的最小正周期;
(2)若将的图像向右平移个单位,得到函数的图像,求函数在区间上的最大值和最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

甲、乙两地相距1000,货车从甲地匀速行驶到乙地,速度不得超过80,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的倍,固定成本为元.
(Ⅰ)将全程运输成本(元)表示为速度)的函数,并指出这个函数的定义域;
(Ⅱ)为了使全程运输成本最小,货车应以多大的速度行驶?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)平面内一动点到定点和到定直线的距离相等,设的轨迹是曲线
(1)求曲线的方程;
(2)在曲线上找一点,使得点到直线的距离最短,求出点的坐标;
(3)设直线,问当实数为何值时,直线与曲线有交点?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知,其中均为实数,
(Ⅰ)求的极值;
(Ⅱ)设
求证:对恒成立;
(Ⅲ)设,若对给定的,在区间上总存在使得成立,求m的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知向量,函数

(Ⅰ)求函数的图像的对称中心坐标;
(Ⅱ)将函数图像向下平移个单位,再向左平移个单位得函数的图像,试写出的解析式并作出它在上的图像.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

曲线C上任一点到定点(0,)的距离等于它到定直线的距离.
(1)求曲线C的方程;
(2)经过P(1,2)作两条不与坐标轴垂直的直线分别交曲线C于A、B两点,且,设是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数为切点的切线方程是
(Ⅰ)求实数的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)求函数切线倾斜角的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知偶函数)在点处的切线与直线垂直,函数
(Ⅰ)求函数的解析式.
(Ⅱ)当时,求函数的单调区间和极值点;
(Ⅲ)证明:对于任意实数x,不等式恒成立.(其中e=2.71828…是自然对数的底数)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分10分)已知),,其中是自然对数的底数,
(1)当时,求函数的单调区间和极值;
(2)求证:当时,
(3)是否存在实数,使的最小值是?若存在,求出的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知a>0,函数f(x)=-2asin,当x∈时,-5≤f(x)≤1.
(1)求常数a,b的值;
(2)求f(x)的单调区间;
(3)指出所求函数图像是由f(x)=sinx的图像如何变换得到的.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)求函数f(x)的极值
(2)求函数上的最大值和最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分15分)如图,正方形的边长为1,正方形所在平面与平面互相垂直,的中点.

(1)求证:平面
(2)求证:
(3)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题10分)在中,分别是角的对边,,且
(Ⅰ)求的值及的面积;
(Ⅱ)若,求角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题12分)已知函数的图像经过点
(1)求的值;
(2)在中,所对的边分别为,若,且.求

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学解答题