高中数学

如图,已知曲线 C 2 : x 2 2 - y 2 = 1 ,曲线 C 2 : y = x + 1 P 是平面上一点,若存在过点 P 的直线与 C 1 , C 2 都有公共点,则称 P 为" C 1 - C 2 型点".
image.png

(1)在正确证明 C 1 的左焦点是" C 1 - C 2 型点"时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线 y = k x C 2 有公共点,求证 k > 1 ,进而证明原点不是" C 1 - C 2 型点";
(3)求证:圆 x 2 + y 2 = 1 2 内的点都不是" C 1 - C 2 型点".

来源:2013年全国普通高等学校招生统一考试理科数学
  • 更新:2022-08-22
  • 题型:未知
  • 难度:未知

给定常数 c > 0 ,定义函数 f x = 2 x + c + 4 - x + c ,数列 a 1 , a 2 , a 3 , 满足 a n + 1 = f a n , n N * .
(1)若 a 1 = - c - 2 ,求 a 2 a 3
(2)求证:对任意 n N * , a n + 1 - a n c
(3)是否存在 a 1 ,使得 a 1 , a 2 , , a n , 成等差数列?若存在,求出所有这样的 a 1 ,若不存在,说明理由.

来源:2013年全国普通高等学校招生统一考试理科数学
  • 更新:2022-08-22
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = x e 2 x + c e = 2 . 71828 . . . 是自然对数的底数, c R ).
(Ⅰ)求 f ( x ) 的单调区间、最大值;
(Ⅱ)讨论关于 x 的方程 ln x = f ( x ) 根的个数。

来源:2013年全国普通高等学校招生统一考试理科数学
  • 更新:2022-08-24
  • 题型:未知
  • 难度:未知

已知.
(1)若a=0时,求函数在点(1,)处的切线方程;
(2)若函数在[1,2]上是减函数,求实数a的取值范围;
(3)令是否存在实数a,当是自然对数的底)时,函数 的最小值是3,若存在,求出a的值;若不存在,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

为非负实数,满足,证明:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知=2,点()在函数的图像上,其中=.
( 1 ) 证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,圆与离心率为的椭圆)相切于点.

(Ⅰ)求椭圆的方程;
(Ⅱ)过点引两条互相垂直的两直线与两曲线分别交于点与点(均不重合).
(ⅰ)若为椭圆上任一点,记点到两直线的距离分别为,求的最大值;
(ⅱ)若,求的方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

函数
(1)当x>0时,求证:
(2)是否存在实数a使得在区间[1.2)上恒成立?若存在,求出a的取值条件;
(3)当时,求证:f(1)+f(2)+f(3)+…+.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知


的单调区间
 两点连线的斜率为,问是否存在常数,且,当时有,当时有;若存在,求出,并证明之,若不存在说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)当时,求的单调区间;
(2)若函数上无零点,求的最小值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)求的单调区间;
(2)当时,判断的大小,并说明理由;
(3)求证:当时,关于的方程:在区间上总有两个不同的解.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)若上的最大值为,求实数的值;
(Ⅱ)若对任意,都有恒成立,求实数的取值范围;
(Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知各项均为正数的数列满足:
(1)求的通项公式
(2)当时,求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.()
(1)当时,试确定函数在其定义域内的单调性;
(2)求函数上的最小值;
(3)试证明:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数是定义域为R上的奇函数.
(1)求的值,并证明当时,函数是R上的增函数;
(2)已知,函数,求的值域;
(3)若,试问是否存在正整数,使得恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学解答题