设求及的单调区间设, 两点连线的斜率为,问是否存在常数,且,当时有,当时有;若存在,求出,并证明之,若不存在说明理由.
如图,PA⊥平面ABCD,矩形ABCD的边长AB=1,BC=2,E为BC的中点.(1)证明:PE⊥DE;(2)如果PA=2,求异面直线AE与PD所成的角的大小.
如图,在四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点. (1)证明:EF∥平面PAD; (2)求三棱锥EABC的体积V.
四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体ABCD的体积;(2)证明:四边形EFGH是矩形.
已知函数,,对于,恒成立.(Ⅰ)求函数的解析式;(Ⅱ)设函数.①证明:函数在区间在上是增函数;②是否存在正实数,当时函数的值域为.若存在,求出的值,若不存在,则说明理由.
已知定义在区间上的函数满足,且当时,.(Ⅰ)求的值;(Ⅱ)判断的单调性并予以证明;(Ⅲ)若解不等式.