为了预防甲型H1N1流感,某学校对教室用药薰消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与t时间(小时)成正比,药物释放完毕后,y与t之间的函数关系式为(a为常数)如下图所示,根据图中提供的信息,回答下列问题.(1)从药物释放开始,求每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始至少需要经过多少小时后,学生才可能回到教室.
已知函数,. (1)求函数的最小正周期和单调递增区间; (2)在锐角三角形中,若,,求△的面积.
如图,正三棱锥的底面边长为,侧棱长为,为棱的中点. (1)求异面直线与所成角的大小(结果用反三角函数值表示); (2)求该三棱锥的体积.
设二次函数,对任意实数,有恒成立;数列满足. (1)求函数的解析式和值域; (2)证明:当时,数列在该区间上是递增数列; (3)已知,是否存在非零整数,使得对任意,都有恒成立,若存在,求之;若不存在,说明理由.
已知函数为奇函数. (1)求常数的值; (2)判断函数的单调性,并说明理由; (3)函数的图象由函数的图象先向右平移2个单位,再向上平移2个单位得到,写出的一个对称中心,若,求的值.
上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元. (1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围; (2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.