如图,已知曲线 C 2 : x 2 2 - y 2 = 1 ,曲线 C 2 : y = x + 1 , P 是平面上一点,若存在过点 P 的直线与 C 1 , C 2 都有公共点,则称 P 为" C 1 - C 2 型点".
(1)在正确证明 C 1 的左焦点是" C 1 - C 2 型点"时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证); (2)设直线 y = k x 与 C 2 有公共点,求证 k > 1 ,进而证明原点不是" C 1 - C 2 型点"; (3)求证:圆 x 2 + y 2 = 1 2 内的点都不是" C 1 - C 2 型点".
已知函数 (1)解不等式 (2)若.求证:.
在直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点,直线的极坐标方程为. (1)判断点与直线的位置关系,说明理由; (2)设直线与曲线C的两个交点为A、B,求的值.
已知为半圆的直径,,为半圆上一点,过点作半圆的切线,过点作于,交圆于点,. (Ⅰ)求证:平分; (Ⅱ)求的长.
已知椭圆C的左、右焦点分别为,椭圆的离心率为,且椭圆C经过点. (1)求椭圆C的标准方程; (2)若线段是椭圆过点的弦,且,求内切圆面积最大时实数的值.
已知函数. (1)当时,函数的图像在点处的切线方程; (2)当时,解不等式; (3)当时,对,直线的图像下方.求整数的最大值.