高中数学
代数
集合
集合的概念与表示
集合的基本关系
集合的基本运算
集合的划分
常用逻辑用语
命题及其关系
充分条件、必要条件、充要条件
逻辑联结词“或”、“且”、“非”
全称量词与存在量词
函数
函数的概念
函数的基本性质
一次函数的性质与图象
二次函数的性质与图象
基本初等函数
指数函数
对数函数
幂函数
函数的应用
函数的零点与方程的根
函数与方程的综合运用
函数模型及其应用
导数及其应用
导数的概念及其意义
导数的运算
定积分、微积分
导数在研究函数中的应用
不等式
不等关系与不等式
一元二次不等式
二元一次不等式
基本不等式及其应用
其他不等式
数列与差分
数列的概念及表示法
等差数列
等比数列
数列综合
数列差分
平面向量
向量的概念
平面向量的线性运算
平面向量的基本定理
平面向量的坐标
平面向量的数量积
平面向量的应用
数系的扩充与复数
复数的概念
复数的运算
复数的模
三角函数
任意角和弧度制
三角函数的概念
三角函数的性质
诱导公式
同角三角函数间的基本关系
三角函数的恒等变换
正弦函数
余弦函数
正切函数
复合三角函数
三角函数的应用
解三角形
概率与统计
统计与统计案例
随机抽样
统计图表
用样本估计总体
变量间的相关关系
一元线性回归模型及其应用
独立性检验
概率
随机事件
概率及其性质
独立事件与条件概率
离散型随机变量及其分布列
连续型随机变量
正态分布曲线
概率综合
计数原理
分类加法,分步乘法
计数原理的应用
排列与组合
二项式定理
推理与证明
推理与证明
合情推理和演绎推理
平面解析几何
直线与方程
直线的几何要素
直线的方程
直线方程的应用
圆与方程
圆的方程
圆的方程的应用
空间直角坐标系
圆锥曲线与方程
椭圆
抛物线
双曲线
圆锥曲线综合
立体几何
空间几何体
立体图形的表面积与体积
立体图形的结构特征
立体图形的直观图
基本事实、公理
直线与直线的位置关系
直线与平面的位置关系
平面与平面的位置关系
空间向量与立体几何
空间向量及其运算
空间向量基本定理及坐标表示
空间向量的应用
知识延伸(选修)
算法与框图
算法及其特点
框图及其结构
几何证明选讲
三角形
圆与球的性质
圆锥曲线
矩阵与变换
线性变换与二阶矩阵
复合变换与二阶矩阵的乘法
逆变换与逆矩阵
高阶矩阵与特征向量
坐标系与参数方程
坐标系
参数方程
不等式选讲
绝对值不等式
不等式的证明
柯西不等式与排序不等式
用数学归纳法证明不等式
初等数论初步
二元一次不定方程的特解
误差估计
平行线法
正交试验设计方法
原根与指数
mod的原根存在性
二次剩余
不定方程和方程组
欧拉定理
数学史选讲
平面解析几何的产生──数与形的结合
微积分的产生──划时代的成就
随机思想的发展
代数拓展
三角不等式
一阶、二阶线性常系数递归数列的通项公式
第二数学归纳法
柯西不等式
排序不等式及应用
多项式的插值公式
函数迭代
几何拓展
西姆松定理
几何不等式
几何中的变换:对称、平移、旋转
面积、复数、向量、解析几何方法的应用
平面凸集、凸包及应用
简单的等周问题
直线束及其应用
三角形的面积公式
多面角及多面角的性质
三面角、直三面角的基本性质
截面及其作法
表面展开图
组合几何

已知函数
(1)求的值域和最小正周期;
(2)若对任意,使得恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

已知命题:函数上单调减函数,实数满足不等式.命题:当,函数.若命题是命题的充分不必要条件,求实数的取值范围。

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

设函数 .
(Ⅰ)求函数y=f(x)的最小值.
(Ⅱ)若 恒成立,求实数a的取值范围.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

已知圆C的极坐标方程为 ,直线l的参数方程为 (t为常数,t∈R)
(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)求直线l与圆C相交的弦长.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合,已知AE的长为m,AC的长为n,AD,AB关于x的方程 的两个根.

(Ⅰ)证明:C、B、D、E四点共圆;
(Ⅱ)若∠A=90°,且m=4,n=6,求C、B、D、E所在圆的半径.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

已知函数 ,其中a∈R,
(Ⅰ)若a=0,求函数f(x)的定义域和极值;
(Ⅱ)当a=1时,试确定函数 的零点个数,并证明.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

关于的不等式 .
(Ⅰ)当时,解此不等式;
(Ⅱ)设函数 ,当m为何值时, 恒成立?

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

已知在直角坐标系xOy中,直线l的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为 
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设点P是曲线C上的一个动点,求它到直线l的距离d的取值范围.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.

(Ⅰ)求证:AC平分∠BAD;
(Ⅱ)求BC的长.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

如图,在直三棱柱中,平面 侧面.

(Ⅰ)求证:; 
(Ⅱ)若直线AC与平面所成的角为,求锐二面角的大小.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏。
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记 ,求随机变量的分布列与数学期望 .

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

在△A BC,a,b,c分别是角A,B,C的对边,且.
(Ⅰ)求B的大小;
(Ⅱ)若 ,求△A BC的面积.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

已知函数 且此函数图象过点(1,5).
(1)求实数m的值;
(2)判断奇偶性;
(3)判断函数上的单调性?并用定义证明你的结论.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

已知二次函数
(1)若写出函数的单调增区间和减区间
(2)若求函数的最大值和最小值:
(3)若函数在上是单调函数,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

已知全集,集合

(1)用列举法表示集合A与B;
(2)求.

  • 更新:2020-03-18
  • 题型:解答题
  • 难度:中等

高中数学解答题