高中数学
代数
集合
集合的概念与表示
集合的基本关系
集合的基本运算
集合的划分
常用逻辑用语
命题及其关系
充分条件、必要条件、充要条件
逻辑联结词“或”、“且”、“非”
全称量词与存在量词
函数
函数的概念
函数的基本性质
一次函数的性质与图象
二次函数的性质与图象
基本初等函数
指数函数
对数函数
幂函数
函数的应用
函数的零点与方程的根
函数与方程的综合运用
函数模型及其应用
导数及其应用
导数的概念及其意义
导数的运算
定积分、微积分
导数在研究函数中的应用
不等式
不等关系与不等式
一元二次不等式
二元一次不等式
基本不等式及其应用
其他不等式
数列与差分
数列的概念及表示法
等差数列
等比数列
数列综合
数列差分
平面向量
向量的概念
平面向量的线性运算
平面向量的基本定理
平面向量的坐标
平面向量的数量积
平面向量的应用
数系的扩充与复数
复数的概念
复数的运算
复数的模
三角函数
任意角和弧度制
三角函数的概念
三角函数的性质
诱导公式
同角三角函数间的基本关系
三角函数的恒等变换
正弦函数
余弦函数
正切函数
复合三角函数
三角函数的应用
解三角形
概率与统计
统计与统计案例
随机抽样
统计图表
用样本估计总体
变量间的相关关系
一元线性回归模型及其应用
独立性检验
概率
随机事件
概率及其性质
独立事件与条件概率
离散型随机变量及其分布列
连续型随机变量
正态分布曲线
概率综合
计数原理
分类加法,分步乘法
计数原理的应用
排列与组合
二项式定理
推理与证明
推理与证明
合情推理和演绎推理
平面解析几何
直线与方程
直线的几何要素
直线的方程
直线方程的应用
圆与方程
圆的方程
圆的方程的应用
空间直角坐标系
圆锥曲线与方程
椭圆
抛物线
双曲线
圆锥曲线综合
立体几何
空间几何体
立体图形的表面积与体积
立体图形的结构特征
立体图形的直观图
基本事实、公理
直线与直线的位置关系
直线与平面的位置关系
平面与平面的位置关系
空间向量与立体几何
空间向量及其运算
空间向量基本定理及坐标表示
空间向量的应用
知识延伸(选修)
算法与框图
算法及其特点
框图及其结构
几何证明选讲
三角形
圆与球的性质
圆锥曲线
矩阵与变换
线性变换与二阶矩阵
复合变换与二阶矩阵的乘法
逆变换与逆矩阵
高阶矩阵与特征向量
坐标系与参数方程
坐标系
参数方程
不等式选讲
绝对值不等式
不等式的证明
柯西不等式与排序不等式
用数学归纳法证明不等式
初等数论初步
二元一次不定方程的特解
误差估计
平行线法
正交试验设计方法
原根与指数
mod的原根存在性
二次剩余
不定方程和方程组
欧拉定理
数学史选讲
平面解析几何的产生──数与形的结合
微积分的产生──划时代的成就
随机思想的发展
代数拓展
三角不等式
一阶、二阶线性常系数递归数列的通项公式
第二数学归纳法
柯西不等式
排序不等式及应用
多项式的插值公式
函数迭代
几何拓展
西姆松定理
几何不等式
几何中的变换:对称、平移、旋转
面积、复数、向量、解析几何方法的应用
平面凸集、凸包及应用
简单的等周问题
直线束及其应用
三角形的面积公式
多面角及多面角的性质
三面角、直三面角的基本性质
截面及其作法
表面展开图
组合几何

学校从参加高二年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:
[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100],4.
(1)在给出的样本频率分布表中,求的值;
(2)估计成绩在80分以上(含80分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.
样本频率分布表如下:

分组
频数
频率
[40,50)
2
0.04
[50,60)
3
0.06
[60,70)
14
0.28
[70,80)
15
0.30
[80,90)
A
B
[90,100]
4
0.08
合计
C
D

 

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

已知椭圆的右焦点,过的直线交椭圆两点,且是线段的中点.
(1)求椭圆的方程;
(2)已知是椭圆的左焦点,求的面积.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

设函数
(Ⅰ)当,求函数的单调区间与极值;
(Ⅱ)若函数上是增函数,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

选修;坐标系与参数方程
在直角坐标系中,直线的参数方程为为参数),若以原点为极点,轴正半轴为极轴建立极坐标系,已知圆的极坐标方程为,设是圆上任一点,连结并延长到,使
(Ⅰ)求点轨迹的直角坐标方程;
(Ⅱ)若直线与点轨迹相交于两点,点的直角坐标为,求的值.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

甲、乙、丙三班进行知识竞赛,每两班比赛一场,共赛三场.每场比赛胜者得分,负者得分,没有平局,在每一场比赛中,甲班胜乙班的概率为,甲班胜丙班的概率为,乙班胜丙班的概率为
(Ⅰ)求甲班获第一名且丙班获第二名的概率;
(Ⅱ)设在该次比赛中,甲班得分为,求的分布列和数学期望.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

选修:几何证明选讲
如图,过点作圆的割线与切线为切点,连接的平分线与分别交于点,其中

(Ⅰ)求证:
(Ⅱ)求的大小.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.是椭圆的右顶点与上顶点,直线与椭圆相交于两点.

(Ⅰ)求椭圆的方程;
(Ⅱ)当四边形面积取最大值时,求的值.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线和曲线为参数).
(1)将的方程化为普通方程;
(2)判定直线l与曲线 是否相交,若相交求出截得的弦长.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

在底面是矩形的四棱锥P­ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.

(1)求证:平面PDC⊥平面PAD;
(2)求二面角E­AC­D的余弦值;
(3)求直线CD与平面AEC所成角的正弦值.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

如图所示,在长方体中,,M是棱的中点.

(1)求异面直线所成的角的正切值;
(2)证明:平面平面.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

集合.
(1)若,求实数m的取值范围;
(2)当时,求A的非空真子集的个数.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

已知动圆过定点,且在轴上截得的弦长
(Ⅰ)求动圆圆心的轨迹方程;
(Ⅱ)若过点的直线交圆心的轨迹于点,且,求直线的方程.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

已知函数
(1)求函数的最小正周期和单调递增区间;
(2)当时,若恒成立,求的取值范围.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

已知集合
(1)当时,求
(2)求使的实数的取值范围.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

选修4-5:不等式选讲
设函数
(1)若,解不等式
(2)若函数有最小值,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:解答题
  • 难度:较易

高中数学解答题