已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.是椭圆的右顶点与上顶点,直线与椭圆相交于两点.(Ⅰ)求椭圆的方程;(Ⅱ)当四边形面积取最大值时,求的值.
已知点P是直角坐标平面内的动点,点P到直线的距离为d1,到点F(– 1,0)的距离为d2,且. (1)求动点P所在曲线C的方程; (2)直线过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况); (3)记,,(A、B、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.
已知. (1)当a =" –" 1时,求的单调区间; (2)对一切,恒成立,求实数a的取值范围; (3)证明:对一切,都有成立.
已知数列{bn}前n项和.数列{an}满足,数列{cn}满足. (1)求数列{an}和数列{bn}的通项公式; (2)若对一切正整数n恒成立,求实数m的取值范围.
在△ABC中,角A、B、C的对边分别为a、b、c,且满足. (1)求角B的大小; (2)设,且的最大值是5,求k的值.
已知向量,,定义. (1)求出的解析式.当时,它可以表示一个振动量,请指出其振幅,相位及初相. (2)的图像可由的图像怎样变化得到? (3)若且为△ABC的一个内角,求的取值范围.