(本小题满分12分)
已知(,0),(1,0),的周长为6.
(Ⅰ)求动点的轨迹的方程;
(II)试确定的取值范围,使得轨迹上有不同的两点、关于直线对称.
(本小题满分12分)
如图,四棱锥的底面是正方形,,点E在棱PB上.
(Ⅰ)求证:PB⊥AC;
(Ⅱ) 当PD=2AB,E在何位置时, PB平面EAC;
(Ⅲ) 在(Ⅰ)的情况下,求二面E-AC-B的余弦值.
(本小题满分10分)选修4-4:坐标系与参数方程
已知P为半圆C: (为参数,)上的点,点A的坐标为(1,0),
O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为。
(I)以O为极点,轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(II)求直线AM的参数方程。
(本题10分)假设关于某设备的使用年限x(年)和所支出的维修费用y(万元),有如下的统计资料:
x |
2 |
3 |
4 |
5 |
6 |
y |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
由资料知y与x呈线性相关关系.估计当使用年限为10年时,维修费用是多少万元?
.(本题10分)实数取什么值时,复数是
(1)实数? (2)纯虚数?
从高一学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下:(单位:分)
[40,50),2; [50,60),3; [60,70),10; [70,80),15; [80,90),12; [90,100),8.
(1)列出样本的频率分布表;
(2)画出频率分布直方图;
(3)估计成绩在[60,90)分的学生比例;
(4)估计成绩在85分以下的学生比例.