设,先分别求,,,然后归纳猜想一般性结论,并给出证明.
设曲线在点A(x,)处的切线斜率为k(x),且k (-1)=0.对一切实数x,不等式xk (x)恒成立(≠0).
(1) 求(1)的值;
(2) 求函数k(x)的表达式;
(3) 求证:>
二项式(为大于零的常数)的展开式中各项的二项式系数之和为1024,按的升幂排列的前三项的系数之和是201.
(1)求常数和;
(2)求该二项展开式中含项的系数.
已知复数,当实数为何值时,
(1)为实数; (2)为虚数; (3)为纯虚数.
如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD, AB⊥AD, ,O为AD中点.
(1)求直线与平面所成角的余弦值;
(2)求点到平面的距离
(3)线段上是否存在点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.
(本小题满分12分)
设命题:方程表示焦点在坐标轴上的双曲线,命题:。
(1)写出命题的否定;
(2)若“或”为真命题,求实数的取值范围。
已知函数(,为常数),且为的一个极值点.
(Ⅰ) 求的值;
(Ⅱ) 求函数的单调区间;
(Ⅲ) 若函数有3个不同的零点,求实数的取值范围.
美国金融危机引发全球金融动荡,波及中国沪深两大股市,甲、乙、丙3人打算趁股市低迷之际买入股票。三人商定在圈定的10只股票中各自随机购买1只(假定购买时,每只股票的基本情况完全相同)
(1)求甲、乙、丙3人恰好买到相同股票的概率;
(2)求甲、乙、丙3人中至少有2人买到相同股票的概率.
已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数)若直线与圆相切,求实数m的值.