如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD, AB⊥AD, ,O为AD中点.(1)求直线与平面所成角的余弦值;(2)求点到平面的距离(3)线段上是否存在点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.
(本小题满分12分)如图,正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点 . (1)求二面角B1MNB的正切值; (2)求证:PB⊥平面MNB1; (3)若正方体的棱长为1,画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离 .
(本小题满分12分)如图, 在直角梯形中,∥ 点分别是的中点,现将折起,使, (1)求证:∥平面; (2)求点到平面的距离.
(本小题满分10分)已知:四边形ABCD是空间四边形,E, H分别是边AB,AD的中点,F, G分别是边CB,CD上的点,且. 求证:(1)四边形EFGH是梯形; (2)FE和GH的交点在直线AC上 .
(本小题满分8分)已知直线l垂直于直线3x-4y-7=0,直线l与两坐标轴围成的三角形的周长为10,求直线l的方程
已知数列满足,试证明: (1)当时,有; (2).