已知数列和满足:,,,其中为实数,.⑴ 对任意实数,证明数列不是等比数列;⑵ 证明:当,数列是等比数列; ⑶设为数列的前项和,是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.
(本题满分13分) 如图,在四棱锥中,底面是菱形,,且侧面平面,点是棱的中点. (1)求证:平面; (2)求证:; (3)若,求证:平面平面.
(本小题满分13分)已知函数 (1)求的值域和最小正周期; (2)若对任意,使得恒成立,求实数的取值范围.
(本小题满分13分)已知数列满足:,数列满足:,,数列的前项和为. (Ⅰ)求证:数列为等比数列; (Ⅱ)求证:数列为递增数列; (Ⅲ)若当且仅当时,取得最小值,求的取值范围.
设. (1)令,求的单调区间; (2)若当时,恒成立,求实数的取值范围;
在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k. (1)若直线PA平分线段MN,求k的值; (2)当k=2时,求点P到直线AB的距离d,且求的面积.