(本小题满分12分)设命题:方程表示焦点在坐标轴上的双曲线,命题:。(1)写出命题的否定;(2)若“或”为真命题,求实数的取值范围。
在平面直角坐标系中,点与点关于原点对称,是动点,且直线与的斜率之积等于.(1)求动点的轨迹方程;(2)设直线和分别与直线交于点,问:是否存在点使得与的面积相等?若存在,求出点的坐标;若不存在,说明理由.
在一次考试中,5名同学数学、物理成绩如下表所示:
(1)根据表中数据,求物理分对数学分的回归方程:(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以表示选中的同学中物理成绩高于90分的人数,求随机变量的分布列及数学期望.(附:回归方程中,,)
如图,在三棱柱中,已知,,,.(1)求证:;(2)设 (),且平面与所成的锐二面角的大小为30°,试求的值.
已知数列满足,,.(1)求证:是等差数列;(2)证明:.
已知向量,,.(1)若⊥,求的值;(2)若∥,求的值.