(本小题满分12分)为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分按每度0.5元计算.
(1)设月用电x度时,应交电费y元.写出y关于x的函数关系式;
(2)小明家第一季度交纳电费情况如下:
则小明家第一季度共用电多少度?
已知函数,.且为奇函数,
(1)求的值;
(1)若函数f(x)在区间(-1,1)上为增函数,且满足f(x-1)+f(x)<0,求x 的取值集合。
(本小题满分12分)设数列的前项和
(1)求的值;
(2)求数列的通项公式;
(3)设,证明:
(本小题满分12分)已知向量.
(1)求与的夹角的余弦值;
(2)若向量与平行,求的值.
(本小题满分14分)已知椭圆()经过点,且椭圆的左、右焦点分别为、,过椭圆的右焦点作两条互相垂直的直线,分别交椭圆于点、及、.
(1)求椭圆的方程;
(2)求的值;
(3)求的最小值.
某机床厂2011年年初用98万元购进一台数控机床,并立即投入生产使用.计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元;该机床使用后,每年的总收入为50万元.
设使用年后数控机床的盈利额为万元.
(Ⅰ)写出与之间的函数关系式;
(Ⅱ)使用若干年后,对机床的处理方案有两种:
方案一:当年平均盈利额达到最大值时,以万元价格处理该机床;
方案二:当盈利额达到最大值时,以万元价格处理该机床;
请你研究一下哪种方案处理较为合理?并说明理由.
已知数列{an}各项均为正数,其前n项和为Sn,且满足4Sn=(an+1)2.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和为Tn
(本小题满分14分)在平面直角坐标系中,已知的顶点坐标为.
(1)求直线的方程;
(2)求边上高所在的直线方程.
(本小题满分13分)如图,在直角坐标系中,角的顶点是原点,始边与轴正半轴重合.终边交单位圆于点,且,将角的终边按逆时针方向旋转,交单位圆于点,记.
(1)若,求;
(2)分别过作轴的垂线,垂足依次为,记的面积为,的面积为,若,求角的值.
(本小题满分10分)中,分别为角所对的边.
(Ⅰ)若成等差数列,求的值;
(Ⅱ)若成等比数列,求角的取值范围.