(理科)已知抛物线的准线与轴交于点,为抛物线的焦点,过点斜率为的直线与抛物线交于两点。
(1)若,求的值;
(2)是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,请说明理由。
某车间共有12名工人,需配备两种型号的机器,每台A型机器需2人操作,每天耗电30千瓦时,能生产出价值4万元的产品;每台B型机器需3人操作,每天耗电20千瓦时,能生产出价值3万元的产品,现每天供应车间的电量不多于130千瓦时,问这个车间如何配备这两种型号的机器,使每天的产值最大?最大产值是多少万元?
已知直线与圆相交于两点,是坐标原点,三角形的面积为。
(1)试将表示成的函数,并求出它的定义域;
(2)求的最大值,并求取得最大值时的值。
已知A、B是圆上满足条件的两个点,其中O是坐标原点,分别过A、B作轴的垂线段,交椭圆于点,动点P满足.(1)求动点P的轨迹方程;(2)设S1和S2分别表示和的面积,当点P在x轴的上方,点A在x轴的下方时,求的最大值。
已知椭圆C:的左右焦点分别为,点B为椭圆与
轴的正半轴的交点,点P在第一象限内且在椭圆上,且与轴垂直,
(1)求椭圆C的方程;
(2)设点B关于直线的对称点E(异于点B)在椭圆C上,求的值。
已知是圆上满足条件的两个点,其中O是坐标原点,分别过A、B作轴的垂线段,交椭圆于点,动点P满足.(1)求动点P的轨迹方程;(2)设和分别表示和的面积,当点P在轴的上方,点A在轴的下方时,求+的最大值。