22、
定义F(x,y)=yx(x>0,y>0).
(1)设函数f(n)=(n∈N*) , 求函数f(n)的最小值;
(2)设g(x)=F(x,2),正项数列{an}满足;a1=3,g(an+1)=,求数列{an}的通项公式,并求所有可能乘积aiaj(1≤i≤j≤n)的和.
本题满分12分)
2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮(含义:“北京欢迎你”)。现有8个相同的盒子,每个盒子中有一只福娃,每种福娃的数量如下表:
福娃名称 |
贝贝 |
晶晶 |
欢欢 |
迎迎 |
妮妮 |
数 量 |
2 |
2 |
2 |
1 |
1 |
从中随机地选取5只。
(1)求选取的5只恰好组成完整“奥运会吉祥物”的概率;
(2)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;……。设ξ表示所得的分数,求ξ的分布列和期望值。(结果保留一位小数)
在三棱柱ABC-A1B1C1中,∠ACB=,AC=CB=1,D1是线段A1B1上一动点(可以与A1或B1重合)。过D1和CC1的平面与AB交于D。
(1)若四边形CDD1C1总是矩形,求证:三棱柱ABC-A1B1C1为直三棱柱;
(2)在(1)的条件下,求二面角B-AD1-C的取值范围。
(本小题满分12分)
已知向量,O是坐标原点,动点P满足:
(Ⅰ)求动点P的轨迹;
(Ⅱ)设B、C是点P的轨迹上不同两点,满足,在x轴上是否存在点A(m,0),使得,若存在,求出实数m的取值范围;若不存在,说明理由。
(13分)有一批电脑原价2000元,甲、乙两个商店均有销售,甲商店按如下方法促销:在10台内(不含10台)买一台优惠2.5%,买两台优惠5%,买三台优惠7.5%……,依此类推,即多买一台,每台再优惠2.5个百分点(1%叫做一个百分点),10台后(含10台)每台1500元;乙商店一律原价的80%销售。某学校要买一批电脑,去哪家商店购买更合算?