(满分12) 设函数是以2为周期的函数,且时,,(1)、求 (2)、当时,求的解析式.
某家居装饰设计的形状是如图所示的直三棱柱,其中,,是边长为2(单位:米)的正方形,,点为棱上的动点.(Ⅰ)现需要对该装饰品的表面进行涂漆处理,假设每平方米的油漆费是40元,则需油漆费多少元?(提示:,结果保留到整数位)(Ⅱ)当点为何位置时,平面?
某小区内有如图所示的一矩形花坛,现将这一矩形花坛扩建成一个更大的矩形花坛,要求点在上,点在上,且对角线过点,已知米,米.(Ⅰ)要使矩形的面积大于32平方米,则的长应在什么范围内?(Ⅱ)当的长度是多少时,矩形花坛的面积最小?并求出最小值.
已知直线与圆相交于不同两点,.(Ⅰ)求实数的取值范围(Ⅱ)是否存在实数,使得过点的直线垂直平分弦?若存在,求出的值;若不存在,请说明理由.
在中,角、、对的边分别为、、,且(Ⅰ)求的值;(Ⅱ)若,求的面积.
已知点和点.(Ⅰ)求过点且与直线垂直的直线的一般式方程;(Ⅱ)求以线段为直径的圆的标准方程.