如图,直角坐标系中,一直角三角形,,B、D在轴上且关于原点对称,在边上,BD=3DC,△ABC的周长为12.若一双曲线以B、C为焦点,且经过A、D两点.⑴ 求双曲线的方程;⑵ 若一过点(为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点、,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由
(本小题满分10分) 将10个白小球中的3个染成红色,3个染成黄色,试解决下列问题:(1)求取出3个小球中红球个数的分布列和数学期望;(2)求取出3个小球中红球个数多于白球个数的概率.
(本小题满分12分)如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<).(1)求MN的长;(2)当a为何值时,MN的长最小;(3)当MN的长最小时,求面MNA与面MNB所成的二面角的余弦值.
(本小题满分14分) 已知数列的前n项和Sn=9-6n. (1)求数列的通项公式.(2)设,求数列的前n项和.
(本小题满分12分)过点P(1,4)作直线L,直线L与x,y的正半轴分别交于A,B两点,O为原点, ①△ABO的面积为S,求S的最小值并求此时直线l的方程;②当|OA|+|OB|最小时,求此时直线L的方程
( 12分)在△ABC中,sinA+cosA=,AC=2,AB=3,求① tanA的值 ; ② △ABC的面积.