某校联合社团有高一学生126人,高二学生105人,高三学生42人,现用分层抽样的方法从中抽取13人进行关于社团活动的问卷调查.设问题的选择分为“赞同”和“不赞同”两种,且每人都做出了一种选择.下面表格中提供了被调查学生答卷情况的部分信息.(1)完成下列统计表:(2)估计联合社团的学生中“赞同”的人数;(3)从被调查的高二学生中选取2人进行访谈,求选到的两名学生中恰好有一人“赞同”的概率.
某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,得到的数据如下:
(1)求出y关于x的线性回归方程; (2)试预测加工10个零件需要多少时间?
已知实数x、y满足 (1)求不等式组表示的平面区域的面积; (2)若目标函数为z=x-2y,求z的最小值.
对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.
(1)画出茎叶图,由茎叶图判断哪位选手的成绩较稳定? (2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.
设是定义在R上的两个函数,是R上任意两个不等的实根,设恒成立,且为奇函数,判断函数的奇偶性并说明理由。
(本小题满分14分)函数 (1)若,求的值域 (2)若在区间上有最大值14。求的值; (3)在(2)的前题下,若,作出的草图,并通过图象求出函数的单调区间