(本题12分)已知函数,其中.(Ⅰ)若曲线在点处的切线方程为,求函数的解析式;(Ⅱ)讨论函数的单调性;(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.
已知圆的方程: (1)求m的取值范围; (2)若圆C与直线相交于,两点,且,求的值 (3)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值;
如图,在三棱柱中,侧棱底面, 为的中点,. (1)求证:平面; (2)若,求三棱锥的体积.
某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下: 甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法? (2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定?
箱子里有3双不同的手套,随机拿出2只,记事件A表示“拿出的手套配不成对”;事件B表示“拿出的都是同一只手上的手套”. (1)请列出所有的基本事件; (2)分别求事件A、事件B的概率.
已知圆:,点,直线. (1)求与圆相切,且与直线垂直的直线方程; (2)在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上的任一点,都有为一常数,试求出所有满足条件的点的坐标.