如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为,四周空白的宽度为,两栏之间的中缝空白的宽度为.怎样确定广告牌的高与宽的尺寸(单位:),能使矩形广告牌面积最小?
对于函数与常数,若恒成立,则称为函数的一
个“P数对”:设函数的定义域为,且.
(1)若是的一个“P数对”,且,,求常数的值;
(2)若(1,1)是的一个“P数对”,求;
(3)若()是的一个“P数对”,且当时,,求k的值及区间上的最大值与最小值.
已知E是矩形ABCD(如图1)边CD上的一点,现沿AE将△DAE折起至△D1AE(如图2),并且平面D1AE⊥平面ABCE,图3为四棱锥D1—ABCE的主视图与左视图.
(1)求证:直线BE⊥平面D1AE;
(2)求点A到平面D1BC的距离.
2005年某市的空气质量状况分布如下表:
污染指数X |
30 |
60 |
100 |
110 |
130 |
140 |
P |
其中X50时,空气质量为优,时空气质量为良,时,空气质量为轻微污染。(1)求E(X)的值;
(2)求空气质量达到优或良的概率。
已知{an}为等差数列,且a3=-6,a6=0.
(1)求{an}的通项公式;
(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和.
由四个不同的数字1,2,4,x组成无重复数字的三位数.
(1)若x=5,其中能被5整除的共有多少个?
(2)若x=9,其中能被3整除的共有多少个?
(3)若x=0,其中的偶数共有多少个?
(4)若所有这些三位数的各位数字之和是252,求x.
(本小题满分12分)设平面向量,,函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数的单调递增区间.
(本小题满分12分)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为l,2,3,4,5:4个白球编号分别为1,2,3,4,从袋中任意取出3个球.
(Ⅰ)求取出的3个球编号都不相同的概率;
(Ⅱ)记X为取出的3个球中编号的最大值,求X的分布列与数学期望