(本小题满分12分)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为l,2,3,4,5:4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(Ⅰ)求取出的3个球编号都不相同的概率;(Ⅱ)记X为取出的3个球中编号的最大值,求X的分布列与数学期望
(本小题满分14分)已知椭圆的左、右焦点分别为,点是轴上方椭圆上的一点,且, , .(Ⅰ) 求椭圆的方程和点的坐标;(Ⅱ)判断以为直径的圆与以椭圆的长轴为直径的圆的位置关系;(Ⅲ)若点是椭圆:上的任意一点,是椭圆的一个焦点,探究以为直径的圆与以椭圆的长轴为直径的圆的位置关系.
(本小题满分14分)已知等差数列的公差大于0,且是方程的两根,数列的前项的和为,且.(Ⅰ) 求数列,的通项公式;(Ⅱ) 记,求证:;(Ⅲ)求数列的前项和.
(本小题满分12分)如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求二面角的平面角的正切值.
(本小题满分12分)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为,第二次出现的点数为,设复数.(Ⅰ)求事件“”为实数”的概率;(Ⅱ)求事件“”的概率.
(本小题满分14分)设函数的图象经过点.(Ⅰ)求的解析式,并求函数的最小正周期和最值.(Ⅱ)若,其中是面积为的锐角的内角,且,求和的长.