(本小题满分12分)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为l,2,3,4,5:4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(Ⅰ)求取出的3个球编号都不相同的概率;(Ⅱ)记X为取出的3个球中编号的最大值,求X的分布列与数学期望
△中,内角的对边分别为,已知成等比数列, 求(1)的值;(2)设,求的值.
抛物线x2=4y的焦点为F,过点(0,-1)作直线l交抛物线A、B两点,再以AF、BF为邻边作平行四边形FABR,试求动点R的轨迹方程.
已知抛物线y2=4ax(0<a<1)的焦点为F,以A(a+4,0)为圆心,|AF|为半径在x轴上方作半圆交抛物线于不同的两点M和N,设P为线段MN的中点, (Ⅰ)求|MF|+|NF|的值; (Ⅱ)是否存在这样的a值,使|MF|、|PF|、|NF|成等差数列?如存在,求出a的值,
已知中,,则
已知不等式的解集为A,不等式的解集为B, (1)求AB (2)若不等式的解集是AB,求的解集。