(本小题满分14分)(1)掷两颗骰子,其点数之和为4的概率是多少?(2)甲、乙两人约定上午9点至12点在某地点见面,并约定任何一个人先到之后等另一个人不超过一个小时,一小时之内如对方不来,则离去。如果他们二人在8点到12点之间的任何时刻到达约定地点的概率都是相等的,求他们见到面的概率。
求两条渐近线为且截直线所得弦长为的双曲线方程。
抛物线上的一点P(x , y)到点A(a,0)(a∈R)的距离的最小值记为,求的表达式(10分)
已知椭圆C的极坐标方程为,点F1,F2为其左、右焦点,直线l的参数方程为(t为参数,).求点F1,F2到直线的距离之和.
已知矩阵,A的一个特征值,其对应的特征向量是. (Ⅰ)求矩阵; (Ⅱ)若向量,计算的值.
已知函数处取得极值. (1)求实数a的值,并判断上的单调性; (2)若数列满足; (3)在(2)的条件下, 记 求证: