对于函数与常数,若恒成立,则称为函数的一个“P数对”:设函数的定义域为,且.(1)若是的一个“P数对”,且,,求常数的值;(2)若(1,1)是的一个“P数对”,求;(3)若()是的一个“P数对”,且当时,,求k的值及区间上的最大值与最小值.
已知全集合,,,若,试确定实数的取值范围.
已知a>0,b>0,且a+b=1,求证:+≤2.
设.(1)当时,≤3,求的取值范围;(2)若对任意的 ,恒成立,求实数的最小值.
已知圆的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(2)圆,是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
在直角坐标系中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线C2的直角坐标方程为.(1)求曲线C1的直角坐标方程;(2)已知为曲线C2上一点,Q为曲线C1上一点,求P、Q两点间距离的最小值.