高中数学

(本小题满分12分)
已知函数,实数为常数).
(Ⅰ)若,求处的切线方程;
(Ⅱ)若,讨论函数的单调性.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

L为曲线Cy在点(1,0)处的切线.
(1)求L的方程;
(2)证明:除切点(1,0)之外,曲线C在直线L的下方.

来源:2014年高考数学文二轮专题复习与测试解答题抢分训练练习卷
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中
(1)若m =" –" 2,求在(2,–3)处的切线方程;
(2)当时,函数的图象上任意一点的切线斜率恒大于3 m,求m的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)当时,求函数的点处的切线方程;
(Ⅱ)设,若函数在定义域内存在两个零点,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

,  
(1)当时,求曲线处的切线方程;
(2)如果存在,使得成立,求满足上述条件的最大整数
(3)如果对任意的,都有成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设定义在(0,+∞)上的函数f(x)=axb(a>0).
(1)求f(x)的最小值;
(2)若曲线yf(x)在点(1,f(1))处的切线方程为yx,求ab的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知曲线 y = x3 + x-2 在点 P0 处的切线  平行直线4xy-1=0,且点 P0 在第三象限,
⑴求P0的坐标; ⑵若直线  , 且 l 也过切点P0 ,求直线l的方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)讨论函数在定义域内的极值点的个数;
(2)若函数处取得极值,对,恒成立,求实数的取值范围;
(3)当时,试比较的大小

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)求
(Ⅱ)求函数图象上的点处的切线方程.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数
(1)若函数处与直线相切;
①求实数的值;②求函数上的最大值;
(2)当时,若不等式对所有的都成立,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数的图象经过点,曲线在点处的切线恰好与直线垂直.
(1)求实数的值;
(2)若函数在区间上单调递增,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

己知函数,其中 
(1)求函数的单调区间;
(2)若直线x-y-l=0是曲线y=的切线,求实数的值;
(3)设,求g(x)在区间上的最大值(其中e为自然对数的底数)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的导函数。  (1)求函数的单调递减区间;
(2)若对一切的实数,有成立,求的取值范围; 
(3)当时,在曲线上是否存在两点,使得曲线在 两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的最大值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题12分)
已知函有极值,且曲线处的切线斜率为3.
(1)求函数的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函数有三个零点,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题