高中数学

已知函数.
(1)求在点处的切线方程;
(2)求函数上的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(1)已知函数f(x)=x-ax+(a-1)。讨论函数的单调性;       
(2).已知函数f (x)=lnxg(x)=ex.设直线l为函数 yf (x) 的图象上一点A(x0f (x0))处的切线.问在区间(1,+∞)上是否存在x0,使得直线l与曲线y=g(x)也相切.若存在,这样的x0有几个?,若没有,则说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分13分)时下,网校教学越越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求的值;
(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数 f ( x ) = a ln x + 1 2 x + 3 2 x + 1 ,其中在 a R ,曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线垂直于 x
(Ⅰ)求 a 的值;
(Ⅱ)求函数 f ( x ) 极值.

来源:2012年全国普通高等学校招生统一考试理科数学
  • 更新:2022-08-15
  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)求在区间上的最大值;
(Ⅱ)若过点存在条直线与曲线相切,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数的导数满足,其中常数,求曲线在点处的切线方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施不能建设开发,且要求用栏栅隔开(栏栅要求在直线上),公共设施边界为曲线的一部分,栏栅与矩形区域的边界交于点M、N,切曲线于点P,设

(I)将(O为坐标原点)的面积S表示成f的函数S(t);
(II)若,S(t)取得最小值,求此时a的值及S(t)的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数上为增函数,
(1)求的值;
(2)当时,求函数的单调区间和极值;
(3)若在上至少存在一个,使得成立,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)求
(Ⅱ)求函数图象上的点处的切线方程.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数
(1)若函数处与直线相切;
①求实数的值;②求函数上的最大值;
(2)当时,若不等式对所有的都成立,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数的图象经过点,曲线在点处的切线恰好与直线垂直.
(1)求实数的值;
(2)若函数在区间上单调递增,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

己知函数,其中 
(1)求函数的单调区间;
(2)若直线x-y-l=0是曲线y=的切线,求实数的值;
(3)设,求g(x)在区间上的最大值(其中e为自然对数的底数)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的导函数。  (1)求函数的单调递减区间;
(2)若对一切的实数,有成立,求的取值范围; 
(3)当时,在曲线上是否存在两点,使得曲线在 两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的最大值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题12分)
已知函有极值,且曲线处的切线斜率为3.
(1)求函数的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函数有三个零点,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题