(本题12分)已知函有极值,且曲线处的切线斜率为3.(1)求函数的解析式;(2)求在[-4,1]上的最大值和最小值。(3)函数有三个零点,求实数的取值范围.
如图,在平行四边形中,,,为线段的中线,将△沿直线翻折成△,使平面⊥平面,为线段的中点.(1)求证:∥平面;(2)设为线段的中点,求直线与平面所成角的余弦值.
已知一隧道的截面是一个半椭圆面(如图所示),要保证车辆正常通行,车顶离隧道顶部至少要有米的距离,现有一货车,车宽米,车高米.(1)若此隧道为单向通行,经测量隧道的跨度是米,则应如何设计隧道才能保证此货车正常通行?(2)圆可以看作是长轴短轴相等的特殊椭圆,类比圆面积公式,请你推测椭圆的面积公式.并问,当隧道为双向通行(车道间的距离忽略不记)时,要使此货车安全通过,应如何设计隧道,才会使同等隧道长度下开凿的土方量最小?
求经过点,且与圆相切于点的圆的方程,并判断两圆是外切还是内切?
直线经过点,且与圆相交与两点,截得的弦长为,求的方程?
已知直线:⑴求证:不论实数取何值,直线总经过第一象限⑵为使直线不经过第二象限,求实数的取值范围