高中数学

(本小题满分12分)定义在上的函数同时满足以下条件:
上是减函数,在上是增函数;                
是偶函数;
处的切线与直线垂直.
(1)求函数的解析式;
(2)设,求函数上的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数上一点,过点作直线
(Ⅰ)求使直线相切,且以为切点的直线方程;
(Ⅱ)求使直线相切,且切点异于的直线方程.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)若函数在点处的切线斜率为1,求的值;
(2)在(1)的条件下,对任意,函数在区间总存在极值,求的取值范围;
(3)若,对于函数上至少存在一个使得成立,求实数的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求f(x)的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

.(本小题满分10分)已知函数.
(1)求这个函数的导数;
(2)求这个函数的图象在点处的切线方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知曲线
(1)求曲线在点处的的切线方程;
(2)过原点作曲线的切线,求切线方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(1)若,求曲线在点处的切线方程;
(2)若函数在区间上单调递增,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知曲线y=x3,求曲线过点P(2,4)的切线方程;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)求
(Ⅱ)求函数图象上的点处的切线方程.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数
(1)若函数处与直线相切;
①求实数的值;②求函数上的最大值;
(2)当时,若不等式对所有的都成立,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数的图象经过点,曲线在点处的切线恰好与直线垂直.
(1)求实数的值;
(2)若函数在区间上单调递增,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

己知函数,其中 
(1)求函数的单调区间;
(2)若直线x-y-l=0是曲线y=的切线,求实数的值;
(3)设,求g(x)在区间上的最大值(其中e为自然对数的底数)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的导函数。  (1)求函数的单调递减区间;
(2)若对一切的实数,有成立,求的取值范围; 
(3)当时,在曲线上是否存在两点,使得曲线在 两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的最大值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题12分)
已知函有极值,且曲线处的切线斜率为3.
(1)求函数的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函数有三个零点,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题