(本小题满分14分)如图,在直三棱柱
中,
,
、
分别是
,
的中点.
(1)求证:
∥平面
;
(2)求证:平面
平面
;
(3)若
,
,求三棱锥
的体积.
(本题满分12分,第(1)小题6分,第(2)小题6分)
如图,
是圆柱体
的一条母线,
过底面圆的圆心
,
是圆
上不与点
、
重合的任意一点,已知棱
,
,
.
(1)求直线
与平面
所成的角的大小;
(2)将四面体
绕母线
转动一周,求
的三边在旋转过程中所围成的几何体的体积.
如图,某几何体的下部分是长为8,宽为6,高为3的长方体,上部分是侧棱长都相等且高为3的四棱锥,求:
(1)该几何体的体积;
(2)该几何体的表面积.
已知四边形
满足
,
,
是
的中点,将
沿着
翻折成
,使面
面
,
分别为
的中点. 

(1)求三棱锥
的体积;
(2)证明:
∥平面
;
(3)证明:平面
平面
已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的侧面积S.
已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.
(1)画出该三棱锥的直观图;
(2)求出侧视图的面积.
如图,三棱柱
中,侧棱
平面
,
为等腰直角三角形,
,且
分别是
的中点.
(1)求证:
平面
;
(2)求三棱锥
的体积.
(3)若点
是
上一点,求
的最小值.
如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,且PM=3MC,求三棱锥P﹣QBM的体积.
(本小题满分14分)四棱锥
中,
底面
,
,
,
.
(1)求证:
平面
;
(2)若侧棱
上的点
满足
,求三棱锥
的体积.
如图,四棱锥
中,
底面
,
,
,
.
(1)求证:
平面
;
(2)若侧棱
上的点
满足
,求三棱锥
的体积.